
Decentralized Formation and Attitude Control of Spacecraft:
Decentralized Spacecraft Assembly of

Megastructures in an Elliptic Orbit

Submitted in partial fulfillment of the requirements

of the degree of

Bachelor of Technology

by

Aaron John Sabu
(Roll No. 170070050)

Supervisor:

Prof. Dwaipayan Mukherjee

Department of Electrical Engineering

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

Spring 2021



Dedicated to God Almighty for everything in my life,

particularly my beloved parents and sister,

my institution, advisor, and instructors,

and my friends and supporters.



Declaration

I declare that this written submission represents my ideas in my own words, and where others’

ideas or words have been included, I have adequately cited and referenced the original sources. I

also declare that I have adhered to all principles of academic honesty and integrity and have not

misrepresented, fabricated, or falsified any idea/data/fact/source in my submission. I understand

that any violation of the above will be cause for disciplinary action by the Institute and can also

evoke penal action from the sources that have not been adequately cited or from whom proper

permission has not been taken when needed.

Date: 2021-04-12
Aaron John Sabu

Roll No. 170070050



Acknowledgments

I wish to record a deep sense of gratitude to my supervisor, Prof. Dwaipayan Mukherjee

for his valuable guidance and constant support throughout the B.Tech project. He was

always available at a very short time’s notice, accepted my ignorance with an open heart, and

was willing to spend time advising and providing feedback. I firmly believe that he has had an

enormous role in transforming this project into much more than just an academic pursuit.

Secondly, I am incredibly grateful to my father, Dr. Sabu John, my mother, Mrs. Jessy Sabu

John, and my sister, Dr. Priscilla Thankam Sabu, for supporting me in every way possible

throughout the progress of the project. I firmly believe that achieving goals would have been a

matter of great worry in these challenging times if not for their cooperation and support.

Finally, I am thankful to everyone who has positively impacted my life and undergraduate ca-

reer, from instructors who have personally guided me throughout my studies to my friends and

peers who have never failed to inspire me.

i



Abstract

T he curiosity of humankind has led them to investigate the entire universe. However,

human-made technology is not always at par with human curiosity, and an example is

the inability to send large telescopes to outer space despite the need to do so for higher reso-

lution and less atmospheric interference. We develop a framework for decentralized spacecraft

formation flying and in-orbit construction such that a large telescope can be built in an ellip-

tic orbit around the earth using multiple spacecraft. We split this problem into four steps for

converging the position and attitude of each spacecraft at predefined values around a central

spacecraft. Each spacecraft performs attitude synchronization with its neighbors to match its

three orientational degrees of freedom as a parabolic mirror. Finally, we conclude the research

with a description of the future scope of this work and the possibility of using specific tech-

niques to achieve superior results.
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Chapter 1

Introduction

1.1 Background

M odularity has been a common feature in building structures throughout history. Here

on earth, we have built them from bricks and mortar, and we have constructed struc-

tures in space from specially-built compartments. However, the length (longest dimension) of

the largest structure we have ever constructed in space, the International Space Station, is much

smaller than the height (longest dimension) of the Kushan stupa of Kanishka that dates back to

the 2nd century AD. Constructing a megastructure in space has demanded much more resources

than on the ground in terms of fuel and workforce .

Similarly, we have been able to deploy large telescopes both on earth (Gran Telescopio Ca-

narias, Keck 1) and space (Hubble Space Telescope, the Great Observatories program). It is

more favorable to place telescopes in space to counter artificial glow from light pollution and

the decrease in resolving power due to air turbulence. Moreover, the bigger the telescope is, the

better its resolving power and its light-gathering ability. However, we have always been limited

in our capability of sending large telescopes to space due to rocket payload limitations.

Large telescopes can be deployed in space by building the telescopes in orbit using smaller
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modules that host the telescope’s segments. Robotic arms have been used for similar activities

in the past. However, this imports more complexity into the problem due to the dynamics of the

arms. Also, in the quest to prevent collisions and provide a safe work environment, it may be

required to conduct the mission over several stages in a more extended period, resulting in the

utilization of more resources and the subsequent increase in expenditure.

As a result of the problems mentioned above in construction using robotic arms, researchers

have been looking into the possibility of self-assembly of spacecraft formations in orbit. We

derive motivation for this research based on the similar work done by Foust et al. (2017) on au-

tonomous rendezvous and docking (AR&D) of spacecraft to build a telescope in orbit. However,

this research has dealt with construction in a circular orbit, collision avoidance is not considered

explicitly in the problem, and there is little discussion on each spacecraft’s attitude dynamics.

We develop a simple framework that breaks down the spacecraft formation problem into four

steps to collectively solve the problem of converging to a neighborhood, self-arranging into a

predefined configuration, and attaining configuration-based orientations.

1.2 Motivation

• The maximum size possible for a large telescope in outer space is constrained by the size

of the payload fairing and subsequently the size of the rocket.

• It is not recommendable to use robotic arms for in-orbit construction due to the extra

complexity involved in controlling the motion of the arms. Moreover, using robotic arms

can significantly decrease the scalability of the process.

• Centralized methods such as a central spacecraft dictating target locations cannot be scal-

able for large formations due to the latency in communication and similar issues.

• Present techniques available for decentralized spacecraft formation involve complex al-

gorithms that do not necessarily prevent collisions.

These reasons demand developing a simple but reasonably practical framework for decentral-

ized spacecraft formations in orbit.
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1.3 Research Objectives and Problem Statement

This thesis presents a four-stage framework that can be implemented to construct a space tele-

scope in an elliptic orbit around the earth. We consider a central spacecraft that hosts the on-axis

segment of a large parabolic telescope and multiple spacecraft, each of which hosts an off-axis

segment. Each spacecraft forms a communication network after its ejection in a mission-specific

orbit with neighboring spacecraft and subsequently converges at a specific point of ‘unorganized

pre-assembly’. These locations may be mismatched for some or all spacecraft due to the dif-

ferentiation in the physical configuration that arises from the variations of off-axis parabolic

mirrors. Hence, mismatched spacecraft are re-assigned to matching locations while avoiding

collisions in the process, leading to the ‘organized pre-assembly’ stage. The spacecraft will

simultaneously synchronize their attitudes with neighboring spacecraft in the local frame of

reference. Finally, the spacecraft form an assembly and form the space telescope using a tech-

nique similar to the tether-based docking (Foust et al. (2017)) to join with their neighbors. The

concept for intermediate pre-assembly followed by the final assembly has been inspired from

work by Chen et al. (2017) as depicted in Fig. 1.2 although the overall problem dealt with the

mentioned research is not aligned with our problem.

Figure 1.1: Configuration Transformations (Chen et al. (2017))

The above-mentioned steps can be described as a flowchart in the following manner:

Figure 1.2: Complete Flowchart
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1.4 Thesis outline

The subject matter of the thesis is presented in the following chapters:

X Chapter 2 provides an introduction into concepts from spacecraft dynamics, including

motion in non-inertial frames and the conversion of independent variables.

X Chapter 3 describes basic principles of translation of spacecraft in non-inertial frames and

the application of certain algorithms to optimize such transfer for multiple agents.

X Chapter 4 incorporates the features of parabolic mirrors to calculate the final position and

attitude of the spacecraft and formulates an algorithm to suitably translate the spacecraft.

X Chapter 5 applies recent developments in attitude synchronization to converge the orien-

tations of the spacecraft to values defined by their position and physical configuration.

X Chapter 6 provides concluding remarks on the research and the directions in which it can

further be progressed.
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Chapter 2

Preliminary Knowledge on Spacecraft

Dynamics

2.1 Introduction

T he configuration of a rigid spacecraft is defined by six elements with respect to a prede-

termined frame of reference, three representing its position in three-dimensional space

and three representing its orientation with respect to the axes of the reference frame. This chap-

ter provides insight regarding the importance of orbital parameters for position determination

as well as the control inputs for smaller variations in the position. It also intends to provide

the reader an understanding of how a spacecraft tends to move with respect to a frame of refer-

ence that is fixed with respect to a neighboring spacecraft. This relative motion will be used to

describe motion through the rest of this research.
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2.2 The Spacecraft in Consideration

We will consider each spacecraft of the telescope assembly to be similar in basic structure to a

satellite that minimally consists of a central body, solar arrays, antenna tower(s), and controller

and attitude sensors. The spacecraft will include a propulsion system, either chemical or ion-

based, to vary its positional trajectory and/or its attitude at calculated intervals. The AOCS

hardware of the spacecraft may also include momentum wheels, horizon sensors, sun sensors,

gyroscopes, etc. to measure and fine-tune its attitude. Additionally the spacecraft will host a

segment of the parabolic telescope. A simplistic model of the spacecraft is depicted in Fig.

2.1. The spacecraft design depicts the use of redundant thrusters. Such extra thrusters generally

increase the reliability of the spacecraft control system and provide backup in the case of thruster

failure (Jin et al. (2006)). Moreover, tethers are wound up at a side of the spacecraft and are

unwound to dock with neighboring spacecraft after the organized pre-assembly stage is attained.

(a) Dimetric View (b) Bottom Dimetric View

Figure 2.1: The Spacecraft in Consideration

2.3 Orbital Parameters

According to Sidi (1997), an inertial reference frame can be defined for an earth-orbiting space-

craft as follows: the origin is at the center of mass of the Earth; the Z axis is the axis of rotation

of the Earth in the positive direction; the X axis is the vernal equinox vector formed by the

intersection of the equatorial plane with the ecliptic plane1 at 22.5◦; and the Y axis is defined

by completing the orthogonal right-handed system. The X axis intersects the celestial sphere at
1the plane of Earth’s orbit around the Sun
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the vernal point or first point of the Aries (à).

The classical orbit parameters of the elliptic orbit of a spacecraft around the Earth are given by

a vector α. The component of this vector, as represented in Figure 2.2, are defined as follows:

• a, the semi-major axis of the ellipse,

• e, the eccentricity of the ellipse,

• i, the inclination, i.e., the angle made between the orbit and the earth’s equatorial plane,

• Ω, the right ascension of the ascending node, i.e., the angle from a specific reference

direction (origin of longitude) to the direction of the ascending node of the orbit, as mea-

sured in a specified reference plane2,

• ω , the argument of perigee, i.e., the angle between the radius vector of the moving body

(r) and the the radius vector of the perigee (rP ), and

• M = n(t− t0), the mean anomaly3

Figure 2.2: Classical Elliptic Orbit Parameters (Sidi (1997))

Bloise et al. (2017) introduce the concept of the Local-Vertical-Local-Horizontal (LVLH) frame

of reference, usually coincident with the center of mass of the target (which is the central space-

craft in our case), as depicted in Fig. 2.3. The motion of other bodies in this frame of reference

2For geocentric orbits, Earth’s equatorial plane is the reference plane, and the First Point of Aries (X�) is the

origin of longitude
3n is the mean motion, the angular speed required for a body to complete one orbit, assuming constant speed in

a circular orbit which completes in the same time as the variable speed, elliptical orbit of the actual body
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is defined in terms of certain non-linear relations that depend on the eccentricity of the orbit. In

general, these relations are referred to as the Euler-Hill equations.

Figure 2.3: Local-Vertical-Local-Horizontal (LVLH) Frame (Bloise et al. (2017))

2.4 Relative Motion of Nearby Objects

2.4.1 Euler-Hill Equations

When two satellites move in almost identical orbits and are very near to each other, we may

define a non-inertial coordinate frame of reference with the origin fixed at and moving with

the center of mass of one satellite. The coordinates of the other satellite are calculated in

this moving coordinate frame, hence describing the relative motion of satellites in neighboring

orbits. These equations of motion of the second satellite with respect to the first are called the

Euler-Hill equations. This formulation can be used to solve problems involving the relative

motion of neighboring satellites such as the rendezvous problem between two spacecraft.

Consider two satellites at r1 and r2. Let ρ= r1−r2. From the law of universal gravitation,

r̈1 =−µr1/r3
1 (2.1a)

r̈2 =−µr2/r3
2 +f (2.1b)
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This can be used to form a differential equation in ρ (Sidi (1997)) as:

ρ̈=
µ

r3
1

(
−ρ+3(r1 ·ρ)

r1

r2
1

)
+f +O(r2) (2.2)

Alfriend et al. (2009) develop the linearization of this formulation as developed by Clohessy

and Wiltshire. The nonhomogeneous forms of these equations are given as:

ẍ−2nẏ−3n2x = fx (2.3a)

ÿ+2nẋ = fy (2.3b)

z̈+n2z = fz (2.3c)

In the absence of the force f , we get:

ẍ−2nẏ−3n2x = 0 (2.4a)

ÿ+2nẋ = 0 (2.4b)

z̈+n2z = 0 (2.4c)

Solving these equations gives us:

x(t) = eA(t−t0)x(0) (2.5)

where, provided cnt = cos(nt) and snt = sin(nt),

eAt =



4−3cnt 0 0 snt
n

2
n −

2cnt
n 0

−6nt +6snt 1 0 −2
n +

2cnt
n

4snt
n −3t 0

0 0 cnt 0 0 snt
n

3nsnt 0 0 cnt 2snt 0

−6n+6ncnt 0 0 −2snt −3+4cnt 0

0 0 −nsnt 0 0 cnt


(2.6)

This solution is commonly referred to as the Clohessy-Wiltshire-Hill (CWH) equations.
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2.4.2 Tschauner-Hempel Equations

Considering that the space telescope will be built in low earth orbit, the orbit of each spacecraft

is elliptic rather than circular due to which the CWH solution breaks down and it is required

to formulate the relative equations of motion for the secondary spacecraft with respect to the

primary one considering the eccentricity of the orbit. In fact, according to Fehse (2003), though

they depend only on the initial state, orbit angular frequency, and time, the CWH equations are

only accurate within about 30 km of the origin of the frame due to the linearization.

Unlike circular orbits, the choice of the independent variable being either time or true anomaly

leads to different forms of the equations of motion for elliptic orbits. Time-explicit solutions

such as that by Melton (2000) are attractive since Kepler’s equation need not be solved to

produce results at specified points of time. However, true-anomaly-based solutions prove ad-

vantageous especially near the perigee and are more suitable for long-term motion prediction

for elliptic orbits. Moreover, using truncated approximations, it is possible to represent the true

anomaly in terms of time and hence convert the true-anomaly-based STM into an approximate

time-explicit STM. For this purpose, we look into the Tschauner-Hempel equations (Tschauner

and Hempel (1964)):

x̄′′ =
3
k

x̄+2ȳ′ (2.7a)

ȳ′′ =−2x̄′ (2.7b)

z̄′′ =−z̄′ (2.7c)

Here, (·)′ and (·)′′ indicate, respectively, the first and second derivatives with respect to f , the

true anomaly, and k = 1+ ecos f .

2.4.2.1 Yamanaka-Ankersen Solution

Yamanaka and Ankersen (2002) develop a solution for the homogeneous version of Tschauner-

Hempel equations without considering the force f that includes disturbance accelerations d

and/or control accelerations u. The solution is computed separately for in-plane (x and z axes)

and out-of-plane (y axis) motions.4 Moreover, the state transition matrix is calculated in two

steps: first to convert the independent variables and next to propagate the initial state to a final

4The paper exchanges axes without the loss of generality.
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state. Given the true initial values as r0 and v0, and r̃i = [x̃i, ỹi, z̃i] and ṽi = [ṽxi, ṽyi, ṽzi]
T , the

true final values rt and vt can be calculated in the following steps.

The true initial values (r0) are converted into the transformed initial values (r̃0) as (Yamanaka

and Ankersen (2002)):

r̃0 = ρr0 (2.8a)

ṽ0 =−esinθr0 +
1

k2ρ
v0 (2.8b)

The pseudoinitial values (r̄0) can be calculated from the transformed initial values (r̃0) as:


x̄0

z̄0

v̄x0

v̄z0

=
1

1− e2


1− e2 3es( 1

ρ
+ 1

ρ2 ) −es(1+ 1
ρ
) −ec+2

0 −3s( 1
ρ
+ e2

ρ2 ) s(1+ 1
ρ
) c−2e

0 −3( c
ρ
+ e) c(1+ 1

ρ
)+ e −s

0 3ρ + e2−1 −ρ2 es


θ0


x̃0

z̃0

ṽx0

ṽz0

 (2.9a)

The transformed final values (r̃t) can be calculated from the pseudoinitial values (r̄0) as:


x̃t

z̃t

ṽxt

ṽzt

=


1 −c(1+ 1

ρ
) s(1+ 1

ρ
) 3ρ2J

0 s c (2−3esJ)

0 2s 2c− e 3(1−2esJ)

0 s′ c′ −3e(s′J+ s
ρ2 )




x̄0

z̄0

v̄x0

v̄z0

 (2.10a)

The two steps for the in-plane axes are merged into one for the out-of-plane transformation:

 ỹt

ṽyt

=
1

ρθ−θ0

 c s

−s c


θ−θ0

 ỹ0

ṽy0

 (2.11a)

The transformed final values (r̃t) are converted back into the true final values (rt) as:

rt =
1
ρ
r̃t (2.12a)

vt = k2(esinθ r̃t +ρṽt) (2.12b)
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In the above relations, the symbols are defined as: ρ = 1+ ecosθ , s = ρ sinθ , c = ρ cosθ ,

s′ = cosθ + ecos2θ , c′ =−(sinθ + esin2θ), J = k2(t− t0), and k2 = h/p2.

The entire state transition matrix formed by the merging and multiplying the above mentioned

matrices will be represented as Φ( f ), and when converted to time coordinates, Φ(t). Further-

more, Φ(t) may be split into four 3×3 matrices as:

Φ(t) =

Φrr(t) Φrṙ(t)

Φṙr(t) Φṙṙ(t)

 (2.13)

such that:

rt = Φrr(t)r0 +Φrṙ(t)ṙ0 (2.14a)

ṙt = Φṙr(t)r0 +Φṙṙ(t)ṙ0 (2.14b)

Solutions apart from the YA solution have been suggested for the TH equations. However, these

can be proven to be equivalent to the YA solution excluding pathological and impractical cases.

For example, Dang (2017) proves the equivalence of the Carter solution to the YA solution for

e 6= 1. This condition holds for non-parabolic orbit and is hence applicable to our problem.

2.4.3 A Comparison of the Solutions

In elliptic orbits, the approximation of being circular holds only for a few kilometers around the

target, with this radius decreasing with increasing eccentricity of the actual orbit. Depicted in

Fig. 2.4 is the motion of a spacecraft that intends to reach the origin (location of the target) while

following two trajectories, the red one based on the Yamanaka-Ankersen (YA) equations and

the blue one based on the CWH equations for an orbit with eccentricity of 0.02 and computed

as per the YA solution (all distance units are in km).
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Figure 2.4: CWH solution vs YA solution in Elliptic Orbit

As is visible from the figure, the endpoint of the latter trajectory is off by a distance of 2.55

m from the origin, calling for the use of the elliptic orbit model for our application wherein

spacecraft are required to perform close-distance operations and eventually docking.

Duzzi et al. (2016) suggest several simplifying conditions to reduce the complexity of the space-

craft formation problem. These include the following:

1. The target and the chaser are on the same orbital plane xz, and the relative motion is

limited to this plane.

2. The satellite’s attitude does not influence the thrusters’ performance.

3. The distance between target and chaser is negligible with respect to the orbit radius.

4. The target is placed in the origin of the reference system.

However, these are considered for the circular orbit. In the generalization towards elliptic orbits,

we strictly follow the second and fourth simplifications, and we follow the third condition to

some extent. However, the YA solution does not restrict relative motion to a single plane.

2.5 Conversion of True Anomaly to Time and vice versa

The true anomaly of a spacecraft defines the position of the spacecraft moving along a Keple-

rian orbit. As suggested earlier, the YA solution and other solutions that base on the Tschauner-

Hempel equations demand the representation of the state of the spacecraft in terms of the true

anomaly. Although an actual spacecraft may have the required equipment to calculate an accu-

rate reading for its true anomaly, it is imperative that we convert this parameter to time due to

the required coherence of this step with the rest of the assembly problem.
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There is no closed-form finite-polynomial solution for the value of true anomaly f that corre-

sponds to time t after reaching the perigee. Hence, despite the accuracy attained in opting for the

YA solution (elliptic orbit) instead of the CWH equations (circular orbit), we are constrained to

approximate the value true anomaly in terms of time. We have the following relations between

time t, mean anomaly M, eccentric anomaly E, and true anomaly f (Roy (2004)):

M = nt (2.15)

M = E− esinE (2.16)

tan
θ

2
=

√
1+ e
1− e

tan
E
2

(2.17)

From these, we obtain the approximation of f in terms of t (or M) up to the third place as:

f = nt + c1 sin(nt)+ c2 sin(2nt)+ c3 sin(3nt) (2.18a)

= M+ c1 sin(M)+ c2 sin(2M)+ c3 sin(3M) (2.18b)

where c1 = 2e− e3

4 , c2 =
5
4e2, and c3 =

13
12e3. This value of f may be fed into the YA solution

to obtain the state transition matrix of the spacecraft with time being the independent variable.

2.6 Summary

Following a basic design of each spacecraft that we consider throughout this research, the chap-

ter deals with an overview of orbital motion for a spacecraft in an elliptic orbit. In particular, we

delve into the motion of a spacecraft with respect to the local-vertical-local-horizontal (LVLH)

frame of reference, defined by the Euler-Hill equations, for both circular orbits (CWH equa-

tions) and elliptic orbits (TH equations). We adopt the Yamanaka-Ankersen solution for the

case of elliptic orbits. Finally, we investigate the conversion between real time and true anomaly

due to the dependence of the YA solution on the true anomaly of the central spacecraft.
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Chapter 3

Positional Convergence and Collision

Avoidance

3.1 Introduction

T he spacecraft formation problem requires multiple spacecraft to converge at a predefined

point or a predefined set of points from the point of deployment by the rocket. These

points are defined with respect to the LVLH frame of the central spacecraft since the telescope

is built around the central spacecraft. As a result, each spacecraft requires to propel itself

according to the Tshauner-Hempel equations as described in Chapter 2. In effect, this can be

developed for each spacecraft as a rendezvous problem to a particular point. This chapter looks

into a commonly used guidance strategy for reaching a target in the LVLH frame. Moreover,

it presents a comparison of three algorithms to study how multiple spacecraft can reach their

target locations while incorporating collision avoidance and resource optimization.
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3.2 Rendezvous Algorithms

A spacecraft (here, chaser spacecraft) following the CWH or TH equations tends to follow a

non-linear path from its starting position to the final position in the LVLH frame of the central

spacecraft (also, target spacecraft). While this may pose no issues to the positional convergence

of the spacecraft, it may lead to issues in communication and sensing due to the varying orienta-

tion of the line of sight from the chaser to the target. We look into a rendezvous algorithm where

this is incorporated and another algorithm that resolves the problems that arise subsequently.

3.2.1 Two-Impulse Rendezvous

The classical two-impulse rendezvous algorithm propels the spacecraft directly towards the final

position without considering the requirement for line of sight. As a result, the spacecraft takes

a curvilinear path from the start point to the end point. Its velocity at the start point is varied by

applying a particular value of delta-v1 obtained from the TH equations as follows.

Consider the start position at time t = 0 to be r0 and the start velocity before the application

of velocity change to be ṙ−0 . The velocity ṙ+0 required at r0 to arrive at the final position r1 in

time T is obtained as (Hablani et al. (2002)):

ṙ+0 = Φ
−1
rṙ (T )(r1−Φrr(T )r0) (3.1)

where the matrices Φrr(t) and Φrṙ(t) are obtained from the YA solution as explained in 2. From

this relation, the required delta-v is computed as:

∆V0 = ṙ
+
0 − ṙ

−
0 (3.2)

The arrival velocity at r1(T ), denoted as ṙ1(T ), is given as:

ṙ1(T ) = Φṙr(T )r0 +Φṙṙ(T )ṙ+0 (3.3)

1change in velocity: a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver
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which is countered by a delta-v at the final position as:

∆V1(T ) =−ṙ1(T ) (3.4)

The two-impulse rendezvous algorithm, as described earlier, does not suit the needs of an actual

spacecraft mission due to which we investigate the glideslope algorithm.

3.2.2 Multipulse Glideslope Rendezvous

A glideslope is a straight path from the current location of the chaser spacecraft to its intended

destination, which may be a target spacecraft center of mass, a docking port, or a location of

interest in space near a target. Hablani et al. (2002) develop the multipulse glideslope transfer

wherein an inbound glideslope guidance is invoked when a chaser vehicle is required to ap-

proach a target vehicle. Thruster activity near the target location is to be minimized to avoid

plume impingement on neighboring spacecraft and contamination of their surfaces. In addition,

as a chaser approaches the target position, its relative velocity must diminish to certain safe

limits. These requirements are fulfilled by designing a guidance trajectory wherein the range

rate is proportional to the range.

Traveling on the glideslope for every instant requires continuous thrust which is not a practical

option for spacecraft. Instead, the spacecraft makes jumps (in the LVLH frame) from one point

on the glideslope to the next. In the LVLH frame, let the chaser be located at r0 with velocity

ṙ−0 and be required to arrive at r = rT in time T . The glideslope is a straight line from r0 to rT ,

denoted by ρ0 = rT −r0. Since the spacecraft is required to reach rT at time T , ρT = 0, and

at time t, ρ(t) = r(t)−r0. This vector ρ can be represented in terms of the scalar distance ρ

along the unit vector uρ as ρ= ρuρ . As the distance-to-go ρ decreases, the speed of the space-

craft ρ̇ = aρ + ρ̇T must decrease as mentioned earlier, where ρ̇0 is predefined depending on the

accuracy of the rendezvous operation, and a and ρ̇T are computed as (Hablani et al. (2002)):

a =
ln ρ̇T

ρ̇0

T
=

ρ̇0− ρ̇T

ρ0
< 0 (3.5)
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A desirable feature that arises as a side-effect is the decrease in the acceleration of the spacecraft

ρ̈ = aρ̇ due to the decrease in |ρ̇|. Now we know that,

At t = 0 : ρ = ρ0, ρ̇ = ρ̇0 < 0 (3.6a)

At t = T : ρ = 0, ρ̇ = ρ̇T < 0 (3.6b)

With these boundary conditions, we obtain the general equation for ρ as:

ρ(t) = ρ0eat +
ρ̇T

a
(eat−1) (3.7)

Now, consider the number of thruster firings to travel from r0 to rT in time T to be N and the

uniform interval between any two successive pulses to be ∆t = T/N; i.e. thrusters are fired at

tm = m∆t, m = 0,1, ...,N−1. The mth pulse pushes the chaser from rm to rm+1 where:

rm = rT +ρmuρ (3.8)

ρm = ρ(tm) = ρ0eatm +
ρ̇T

a
(eatm−1) (3.9)

Subsequently, the algorithm operates based on the same principle of the two-impulse ren-

dezvous algorithm by jumping from one intermediate (at first, start) point to the next inter-

mediate (finally, end) point. The applied delta-v at each intermediate point does not bring the

spacecraft to a stop but rather pushes it onto the next point.

(a) 2 Steps (b) 5 Steps (c) 8 Steps

Figure 3.1: Basic Glideslope Algorithm
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The glideslope algorithm, as observed in an elliptic orbit, is represented in Fig. 3.1 with the

number of steps at 2, 5, and 8. The significant improvement in following the line of sight with

increasing the number of steps is visible from the figures.

3.3 Optimization Algorithms

In the presence of multiple spacecraft converging at nearby positions, it is very probable for

collisions to occur. Moreover, the possibility for each spacecraft to reach any one among a set

of multiple positions allows the system to minimize resources consumed by all spacecraft by

optimizing the allocation of target locations to each spacecraft. We specifically consider the

minimization of distance for this purpose and investigate the effectiveness of three distributed

algorithms that are run on all the spacecraft on reaching each intermediate point in the glideslope

algorithm. In an actual scenario, with sufficient computational power, this may also occur

throughout the course of the jump.

3.3.1 Distributed Greedy (Handshake) Algorithm

We develop a greedy algorithm wherein each spacecraft performs a myopic algorithm as ex-

plained in Algorithm 1. Here, intNeighbors is a list of numAgents lists where the ith list enu-

merates the neighbors of agent i with intersecting lines and intersecting is a list of numAgents

booleans where the ith boolean represents if agent i has any intersection. Each spacecraft checks

for intersections of the line of sight to its target location and such lines of its neighbors. The

target locations are exchanged for each intersection such that the intersection is resolved. This

process is continued for the spacecraft until all intersections are resolved.

Let us consider the variation in the total length of the unsolved configuration due to such ex-

changes. Since the sum of two sides of a triangle is larger than the third side, it can be deduced

that solving each intersection reduces the total length of the configuration. If the total length

of the configuration cannot be decreased, it certainly does not contain an intersection because

solving the intersection will decrease the total length which is a contradiction. Hence, the con-

figuration with least total length is a solution to the problem. However, there may also exist

other sub-optimal solutions that do not contain intersections. The greedy algorithm will termi-

nate as soon as it reaches any such solution. Hence, it may not provide the shortest possible
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total line-of-sight distance for the configuration but it will prevent the occurrence of collisions.

The implementation of the algorithm is depicted in Fig. 3.2a.

Algorithm 1: Distributed Greedy (Handshake) Algorithm
Result: Positional Convergence

while True do

Compute intNeighbors and intersecting

if all (intersecting) = False then

Algorithm is complete. Break the loop.

end

forall agent ∈ {1,2,...,numAgents} do

if intersecting[agent] then

forall neighbor ∈ intNeighbors[agent] do

Exchange target locations of agent and neighbor

Recompute intersecting[agent], intNeighbors[agent]

if not (intersecting[agent]) then

Break inner loop

end

end

end

end

end

3.3.2 Zavlanos-Spesivtsev-Pappas (ZSP) Auction Algorithm

Zavlanos et al. (2008) propose a solution to the assignment problem based on the auction algo-

rithm that was developed by Bertsekas (1979) and Bertsekas and Castañon (1991), wherein only

local information is available to each agent. This algorithm always converge to an assignment

that maximizes the total reward within a linear approximation of the optimal one.
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Algorithm 2: Zavlanos-Spesivtsev-Pappas Auction Algorithm (Zavlanos et al. (2008))
Result: Positional Convergence

if Graph G is not connected then

Algorithm cannot be performed.

Return initial target allocation

end

a: a list of numAgents integers, all initialized to 0

b: a list of numAgents lists of numAgents floating point numbers, all initialized to 0

p: a list of numAgents lists of numAgents floating point numbers, all initialized to 0

while a(t +1) contains repetitions do

forall i ∈ {1,2,...,numAgents} do

forall j ∈ {1,2,...,numAgents} do

pi, j(t +1) = max(pk, j(t)∀k ∈Ni∪{i})

bi, j(t +1) = max(bk, j(t)∀k ∈ argmaxz∈Ni∪{i}(pz, j(t)))

end

if pi,ai(t)(t)≤ pi,ai(t+1)(t) and bi,ai(t)(t +1) 6= i then

ai(t +1) = argmax1≤k≤m{βik− pi,k(t +1)}

bi,ai(t+1) = i

vi = max([betai,k− pi,k(t)∀k ∈ range(numAgents)])

wi = max([betai,k− pi,k(t)∀k ∈ range(numAgents),k 6= ai(t +1)])

Assign random value to ε

γi = vi−wi + ε

pi,ai(t+1)(t +1) = pi,ai(t+1)(t)+ γi

end

end

Update a(t), b(t), p(t) with a(t +1), b(t +1), p(t +1)

end

Given in Algorithm 2 is the implementation of the ZSP algorithm over all agents for a single

allocation problem. This is repeated at each intermediate point of the glideslope trajectory to

compute the optimal target allocation for the agents. In the given algorithm, β is a constant list

of numAgents lists of numAgents floating point numbers where the jth number of the ith list

denotes the cost of reaching target j by agent i, a is a list of numAgents integers where the ith

number represents the target assignment of agent i, b is a list of numAgents lists of numAgents
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floating point numbers where the jth number of the ith list denotes the largest-index bidder

among the possibly multiple highest bidders for target j, and p is a list of numAgents lists of

numAgents floating point numbers where the jth number of the ith list denotes the price of

allocating target j to agent i.

As observed in Fig. 3.2b, the algorithm provides an optimal trajectory such that the cumulative

length of the lines of sight of the spacecraft is at the minimum attainable value. This ensures,

through the logic explained in the description of the distributed greedy algorithm, that collisions

are avoided among the spacecraft.

3.3.3 Distributed Hungarian Algorithm

The assignment problem refers to the problem of allocating N tasks among N agents with each

allocation incurring a cost that may vary depending on the agent and the task such that the total

cost of all allocations is minimized. In their historical paper on the Hungarian algorithm for the

assignment problem, Kuhn and Yaw (1955) solve this problem in polynomial time by adjusting

the incurred cost for each agent-task allocation and find the suitable lowest costs over specific

intervals. This has further been developed into a graph theoretical setting by Kuhn (1956).

We adopt this algorithm as what we describe the ‘Distributed Hungarian Algorithm’, into the

positional convergence problem such that each spacecraft performs a version of the Hungarian

algorithm such that an optimal arrangement of final positions is obtained at each spacecraft for

itself and its neighboring spacecraft. Such an algorithm will provide the same output as the ZSP

algorithm if both follow identical patterns of communication. Instead, in order to emulate the

absence of multiple communications among spacecraft for faster convergence to the result, we

consider this algorithm without the presence of feedback from neighboring spacecraft; i.e., each

spacecraft performs the Hungarian algorithm locally and approaches the hence computed target

location while the local computation of one spacecraft is not affected by the simultaneous local

computation of a neighbor.

While such a mechanism can be advantageous in terms of computational speed, it is highly

disadvantageous due to the possibility of multiple spacecraft approaching the same intermedi-

ate/final point or not resolving possible collisions and resulting in imminent impact. Moreover,

This can be observed in Fig. 3.2c.
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3.3.4 A Comparison of the Algorithms

We compare the three algorithms using three test cases, each of which considers randomly

generated start points while having the same end points corresponding to the unorganized pre-

assembly stage of the space telescope. The outputs of the three algorithms are generated for

three levels of communication capability:

• high communication capability: the graph is connected from the start point,

• medium communication capability: the graph is connected from some intermediate point

but before the spacecraft are in close physical proximity with each other,

• low communication capability: the graph is connected from some intermediate point close

to the end point

(a) Distributed Greedy Alg. (b) ZSP Auction Algorithm (c) Distributed Hungarian Alg.

Figure 3.2: Achieving Unorganized Pre-assembly using three different algorithms

While Fig. 3.2 provides a comparison between these algorithms in a particular test case with

high communication capability, the corresponding figures for all these test cases are provided

in Appendix A. As observed from these cases, the ZSP Auction Algorithm, though requiring

the graph to be complete, solves the allocation problem for the entire graph at once. As a result,

the total distance traveled by all spacecraft is optimized although each spacecraft may not be

assigned to its nearest target location. This is in compliance to the nature of the general auction

algorithm.

The Greedy Algorithm does not require the completeness of the communication graph. How-

ever, it is effective only for close approaches or collisions between spacecraft and hence seldom
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exchanges the target locations. This subsequently reduces the arbitrariness in its decisions.

The results of the Distributed Hungarian Algorithm are not satisfactory although it does not re-

quire graph completeness. Though attempting to solve the minimum-sum-of-distances problem

similar to the ZSP Algorithm, the level of localization is higher and the spacecraft enacts based

on its auction prior to receiving feedback from its neighbors; i.e. there is only a single iteration

of determining the final location for each jump. As a result, this algorithm may also lead to

collisions since the information stored by one spacecraft may clash with the information stored

by its neighbors. In essence, the algorithm behaves as a ‘Feedback-less Algorithm’.

From the above algorithms, it can be understood that either the Greedy Algorithm or the ZSP

Algorithm may be implemented for the construction of the space telescope. A hybrid may also

be implemented, wherein the former algorithm is used to prevent collisions with neighbors until

the graph is complete and the latter algorithm is used thereafter to optimize the trajectory of all

spacecraft. There are several other implementations of the auction algorithm that suit the above

problem. One such example is the Consensus-Based Auction Algorithm (CBAA) as proposed

by Choi et al. (2009) (adopted in Lusk et al. (2020)) that deals with task allocation using consen-

sus techniques for each agent to communicate details of the assignment to neighbors. However,

it may be deduced that all such algorithms result in identical or almost-identical solutions, all

of which avoid collisions and optimize the trajectory of all spacecraft. Hence, the choice of

distributed auction algorithm is up to the discretion of the mission planner.

3.4 Summary

This chapter deals with two different types of algorithms: rendezvous algorithms and opti-

mization algorithms. The multipulse glideslope rendezvous algorithm (Hablani et al. (2002))

is discussed in comparison to the two-impulse rendezvous algorithm, and is observed to follow

the line of sight to the central spacecraft much more religiously than the latter technique.

Among optimization algorithms, we look into the Zavlanos-Spesivtsev-Pappas (ZSP) Distributed

Auction Algorithm. We also design two algorithms: the Distributed Greedy (Handshake) Algo-

rithm, based on greedy exchanges of target locations, and the Distributed Hungarian Algorithm,

based on the distributed implementation of the Hungarian algorithm. Despite its capability of

providing the optimal assignment when centralized, the latter performs worst among the three
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due to the lack of feedback from neighbors. Considering the ZSP algorithm and the greedy

algorithm, we have seen that the former provides more optimal results since it minimizes the

total distance (a consequence of the assignment problem). However, the latter is much simpler

in design and it functions even in the lack of a complete graph, due to which an actual spacecraft

formation system may adopt a hybrid of the two algorithms to perform positional convergence.
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Chapter 4

Off-Axis Paraboloidal Mirrors and

Configuration Rearrangement

4.1 Introduction

D ue to the property of focusing energy at a defined point called the focus, paraboloidal

reflectors are very often used to collect energy from a distant source. As reflecting

telescopes, such paraboloidal mirrors with predefined characteristics have been built across the

planet as well as deployed to space to gather light (across the spectrum) from galaxies, stars, and

star systems. Telescopes in orbit prove much more effective than those on the earth since they

avoid a decrease in their resolving power due to the lack of atmospheric fluctuations. How-

ever, it is not possible to deploy extremely large telescopes to space with the structural and

propulsive technology that exists today. This chapter provides general details on paraboloidal

mirrors and delves specifically into the parameterization of off-axis paraboloidal mirrors which,

when mounted together, form a single large paraboloidal mirror. In particular, we look into the

formulation of almost-exact target locations for each spacecraft. We investigate why the opti-

mization algorithms proposed in Section 3.3 are insufficient to acquire the final configuration
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of the telescope and we develop an algorithm with collision avoidance to resolve this problem.

4.2 Properties of Paraboloidal Mirrors

According to McLean (2008), all large astronomical telescopes today, from the ultraviolet range

to radio range, are reflectors and use curved mirrors for light collection and focusing. However,

using spherical-shaped mirrors, as initially used by Newton, results in spherical aberration un-

less the focal length is very long, i.e., parallel incident rays at increasing lateral heights cross

the axis closer and closer to the mirror. A conic section will solve this problem. Conic sections

are so-named since they are all derived from cross-sectional cut through a cone. A fundamental

property of a conic section shape is that any ray starting at one focus will form a perfect point

image at the other. For a parabola, one focus is at infinity, and therefore rays from that focus

are parallel to the axis and all such rays meet at the other focus.

Figure 4.1: James Webb Space Telescope (Greenhouse (2019))

The motivation for building larger ground-based telescopes has been clear for a very long time:

for a telescope of fixed resolution, the observing time necessary to reach a given signal-to-noise

ratio varies as 1/D2, where D is the diameter of the primary mirror. However, building a giant

telescope from a single monolithic mirror presents many difficulties that typically grow rapidly

with increasing mirror size and make building such mirrors with diameters of 10 m or more

highly impractical. According to Oswalt and McLean (2013), constructing the primary mirror

of a telescope out of segments, rather than from a monolithic piece of glass, can drastically

reduce the mass of the mirror and its material costs, thereby making possible the construction

of telescopes with very large diameters. Segmentation has also made possible space telescopes

such as the 6.5-m James Webb Space Telescope, that is set to launch in October 2021.
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4.3 Segmentation Geometry

According to Bely (2003), segmentation can be performed as two geometries: ‘petals’/‘keystones’

and ‘hexagons’. The ‘petals’ geometry uses segments that are slices in radial and azimuthal co-

ordinates while the ‘hexagons’ geometry uses segments of nearly identical-sized hexagons as

depicted in Fig. 4.2. While petals have the advantage of adopting a circular periphery, hexagons

require only a single support type; i.e., all spacecraft may adopt the same design irrespective of

location.

Figure 4.2: ‘Petals’ and ‘Hexagons’ Geometries (Bely (2003))

The hexagonal geometry is built up as ‘layers’ (or ‘rings’) without a central segment or a seg-

ment with a hole in its center. With no central segment, the total number of segments Nagents is

given as a function of the number of layers Nlayers (Bely (2003)):

Nagents = 3Nlayers
(
Nlayers +1

)
(4.1)

Here, the lth layer, considering the central spacecraft to be layer 0, contains 6l segments.

4.4 Parameterization of Off-Axis Paraboloidal Mirrors

Segmented paraboloidal mirrors end up being the imprint of a particular shape, mostly hexago-

nal, on a separated segment of a paraboloidal mirror which is referred to as an off-axis paraboloidal

mirror. Based on information procured from the NASA James Webb Space Telescope group,

the primary mirror segments are sections of a paraboloid, so each hexagonal shaped mirror is
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an off axis paraboloid which have been cookie cut from the larger parabola.

Despite the advantages of OAP mirrors due to which they are used to construct large telescopes,

one of the main practical challenges faced in building an optical system including OAPs is the

unclear or poorly defined datum or geometry parameters that associate with such mirrors. Han

et al. (2019) provide systematically organized information on the geometrical properties of off-

axis paraboloidal mirror segments.

Figure 4.3: Parabolic surface (Han et al. (2019))

Consider a section of a paraboloid as depicted in Fig. 4.3 where the z axis and origin coincide

with the ROA and vertex of the paraboloid, respectively. For R being the radius of curvature of

the paraboloid, the sink of the paraboloid can be expressed as (Han et al. (2019)):

z(x,y) =
x2 + y2

2R
(4.2)

or, x2 + y2 = 2Rz (4.3)

The dotted straight line represents a plane that intersects with the xy plane of the system at
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y = yC with an angle θ to the xz-plane. The plane, called the aperture plane, also intersects with

the paraboloid and the section that it cuts out represents the required OAP.

Figure 4.4: Parabolic surface with Position and Orientation of Spacecraft

We assume that all segments of the mirror have equal clear apertures1 (CA). Considering the

origin of the above plot to coincide with the center of mass of the central spacecraft, each OAP

mirror should be attached to its carrying spacecraft at the points (0,OADi,zOADi)
2. Here, the

off-axis distance (OAD) is the vertical distance from the reference optical axis to the aperture

center which we assume identical to the center of mass. The point (OADi,zOADi), while satis-

fying the parabola equation y2 = 4
(R

2

)
z, also lies on a tangent whose slope is the tangent of the

angle θi. This tangent, from the standard relations of a parabola, can be written as:

y =
2R

2
OADi

z+
2R

2
OADi

zOADi (4.4)

Hence, the following relations can be developed between the angle θi, OADi, and zOADi:

tanθi =
2R

2
OADi

=⇒ OADi =
R

tanθi
(4.5)

zOADi =
OAD2

i
2R

=
R

2tan2 θi
(4.6)

1the diameter or size of an optical component that must meet specifications
2the x coordinate will be ignored hereafter
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With the central spacecraft having a pitch of the spacecraft needs to have an effective pitch

φi =
π

2 −θi that depends on the final layer of the spacecraft. In order to compute φi, we define

the point Pl as the boundary points of the corresponding OAP mirrors, where l is the larger layer

number of the two neighboring mirrors. These points can be represented with the following

relations:

P1 ≡
(

CA
2

,
CA2

8R

)
(4.7)

Pl+1 ≡

(
CA

(
1
2
+

l

∑
i=1

sinθi

)
,CA

(
CA
8R

+
l

∑
i=1

cosθi

))
(4.8)

However, these points also satisfy the parabola equation:

Pl+1[z] =
Pl+1[y]2

2R
(4.9)

Provided the radius of curvature R and the clear aperture CA of the parabola, the above relations

can be used to solve for the value of θi iteratively.

The above computation has been performed for a single segment (dark orange segment 0 in

Fig. 4.5) on the lth (or l +1th) layer of a parabolic mirror where this segment lies on the x = 0

axis. However, there are other segments (yellow segments in Fig. 4.5) which, together with

this segment, will form the entire layer. The z coordinates of the cm of these segments remain

equal to that of segment 0. However, their x and y coordinates vary such that they lie equidistant

from the cm of the central spacecraft and their neighbors. Let the y coordinate of segment 0 be

renamed as Pl+1,0[y] and Nagents(l+1) be the number of spacecraft in the layer. Then, the x and y

coordinates of segment i are given as:

Pl+1,i[x] = Pl+1,0[y]× sin

(
2πi

Nagents(l+1)

)
(4.10a)

Pl+1,i[y] = Pl+1,0[y]× cos

(
2πi

Nagents(l+1)

)
(4.10b)

The spacecraft of the non-‘0’ segments of the layer not only have different x and y coordinates

but also different orientations. While the pitch of all spacecraft in a layer are equal and the roll

of all spacecraft are zero irrespective of their layer number (as will be observed in Chapter 5),

the yaw of each spacecraft in a layer will be indicative of its segment number. This will be
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discussed in the next chapter.

Figure 4.5: Single Layer Mirror Segments

4.5 Intra-Formation Mutual Exchange Algorithm (IFMEA)

OAP mirrors are non-uniform; i.e., an OAP chosen from an arbitrary location is identical in

structure to another OAP only if they posses the same layer number. Here, the layer number

of an OAP refers to the shortest number of OAPs that should be encountered while drawing a

straight line from the center of the entire mirror to the center of the OAP mirror. As a result,

spacecraft carrying the OAP mirrors cannot interchange each others’ locations freely but only

among those lying in the same layer.

An option that does not involve active control from the spacecraft is the use of space robot

manipulators as suggested by She et al. (2020) that may behave as standalone units or connected

to the central spacecraft. However, such actuators may cause serious damage to the delicate

segments of the telescopes that are mounted on each spacecraft. Another option is to enact a

heterogeneous auction algorithm as suggested by Foust et al. (2020). However, since the sizes
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of the spacecraft are comparable to the distance between them, such a technique again poses

high risk to the safety and integrity of the telescope segments. We propose that, following the

positional convergence of the spacecraft to some unorganized pre-assembly configuration as

suggested in Chapter 3, a simple exchange algorithm, the Intra-Formation Mutual Exchange

Algorithm (IFMEA), be followed in a step-by-step manner as depicted in Fig. 4.6.

Figure 4.6: Basic Flowchart of IFMEA

In IFMEA, the central spacecraft searches for and iteratively solves the closest mismatch that

can be solved using the smallest number of exchanges and with the minimum number of mis-

matches excluding the existing one (this is inherently guaranteed since the mismatch will be the

closest possible in the entire formation). Let the layer number of the central spacecraft be 0.

The algorithm is described in Alg. 3 where the keywords and functions are defined as follows:

• maxN represents the maximum layer number

• N is the layer number to which a spacecraft belongs by virtue of its predefined geometry

• L is the layer number to which a spacecraft belongs by virtue of its present position

• SN,L is a spacecraft presently on layer L that belongs to layer N by virtue of geometry

• PL,i is the configuration coordinate of a spacecraft on layer L and the value i represents its
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present location with i = 0 being the spacecraft at (0,OADL,zOADL)

• the function layer(T ) provides the present layer number of a spacecraft T

Algorithm 3: Intra-Formation Mutual Exchange Algorithm
Result: Arranged Pre-assembly Configuration

N← maxN;

while N > 0 do

L← N−1;

while L > 0 do

while num(SN,L)> 0 do

Pick a spacecraft SN,L at some position PL,i. Let us call this spacecraft T;

while layer(T )< N do
1. Rotate the entire layer L in stages to bring T close to any mismatched

spacecraft U = Sn,L+1 on layer L+1 and n 6= L+1. Consider V to be

a neighbor of spacecraft U on layer L+1

2. Perform the following exchange:

• T → Location of V

• V → Location of U

• U → Location of T
end

end

L← L−1
end

N← N−1
end

In the case of there being no mismatch on the layer L+1, the spacecraft T = SN,L is exchanged

with any arbitrarily chosen spacecraft on the layer L+ 1. This creates a new mismatch which

will be resolved when N = L+ 1. Although it is possible to simultaneously perform the algo-

rithm for all spacecraft SN,L, sequential application for each spacecraft ensures the convergence

of the algorithm since a mismatched spacecraft from the outermost layer that is pushed inwards

at some point will come to the outermost layer in its own turn. Performing this simultaneously

for multiple spacecraft may cause mismatches and clashes in the rotations and exchanges.

The Intra-Formation Mutual Exchange Algorithm is performed for a telescope with two layers,

the inner one with 6 segments and the outer one with 12 segments, hence emulating the struc-
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ture of the James Webb Space Telescope. This is done following the positional convergence of

the 18 spacecraft into the positions of the configuration in the LVLH frame of the central space-

craft. A snapshot of the positional convergence (using the ZSP auction algorithm) is presented

in Fig. 4.7a and the subsequent use of IFMEA is provided in Fig. 4.7b. The synchronization of

attitudes (step 3) for these spacecraft are represented in Fig. 5.2 in Chapter 5.

(a) Positional Convergence (b) IFMEA

Figure 4.7: Steps 1 and 2: Spacecraft Formation using 18 spacecraft

This algorithm may be modified as per the structure of the telescope; i.e., depending on whether

it follows a layer-based structure or not; but the essence of the algorithm is the iteration between

the rotation of a particular cyclic group of spacecraft and the exchange of positions among three

or more spacecraft such that collisions are avoided.

A possible issue with the algorithm is plume impingement that may be caused due to the close

proximity of the spacecraft. This can be solved by suitably determining the space between the

spacecraft for positional convergence; i.e. determining the multiple for the coordinate of each

point; and moving them closer only after the attitude consensus stage that is dealt with later.

4.6 Summary

In this chapter, we have discussed the necessity of segmentation in paraboloidal mirrors and

the reasons behind the choice of hexagonal segments over petal-life segments. We based our
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analysis of off-axis paraboloidal mirrors, that are formed by the segmentation of paraboloidal

mirrors, on the parameterization of such mirrors by Han et al. (2019) and we develop almost-

exact positional parameters of each spacecraft based on the clear aperture of the segment and the

radius of curvature of the paraboloid. The analysis depicts why each spacecraft is constrained

to belong to a particular layer around the central spacecraft as a result of which we develop

an exchange algorithm that moves each misplaced spacecraft to its actual layer while avoiding

collisions. This algorithm can be further modified for other designs.
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Chapter 5

Pre-Assembly Configuration-Based

Attitude Consensus

5.1 Introduction

W hile the position of the spacecraft is determined using techniques that consider orbital

parameters and mission requirements, attitude control is used to orient the spacecraft

to facilitate docking with neighboring spacecraft. Our application, due to the close proximity of

each spacecraft with several others, permits this operation to be performed using decentralized

consensus. This chapter presents basic ideas from existing literature on multi-agent consensus

with specific emphasis on attitude consensus. Furthermore, simulations are demonstrated in the

time-variant framework at the pre-assembly stage of the spacecraft formation, and the corre-

sponding results depict the convergence of individual attitudes to the expected value. The final

attitude for each spacecraft is determined from its actual layer number and position in the layer

at the time of measurement along similar lines as the calculation of the final position from the

properties of off-axis paraboloidal mirrors in Chapter 4.

37



5.2 Attitude Dynamics and Kinematics

Reference coordinate systems change for a spacecraft depending on the task that it is involved

in during the given period of its life. The orbit reference frame is one whose origin moves with

the cm of the spacecraft and in which the spacecraft is three-axis attitude-stabilized1. The z-axis

ZR points toward the cm of the earth, XR is in the direction of the velocity of the spacecraft

in the plane of the orbit, and YR (normal to the plane of the orbit) completes a three-axis right-

hand orthogonal system.

The attitude of a satellite can be defined with respect to a reference frame using a direction

cosine matrix [A], a quaternion vector q, or Euler angles. There are other representations that

are used such as the classical and modified Rodriguez parameters, as explained by Terzakis et al.

(2018), and the Cayley-Klein parameters (Goldstein et al. (2000)). Our research will investigate

the attitude consensus problem in the Euler angles (more accurately, the Tait-Bryan angles)

defined by the rotation sequence of z-y’-x” (intrinsic rotations) or x-y-z (extrinsic rotations),

where the first rotation corresponds to ‘yaw’, ψ , the second to ‘pitch’, θ , and the third to ‘roll’

φ . These can be converted to a rotation matrix as:

A = AZAY AX (5.1)

where the individual matrices for the axes are given as:

AX =


1 0 0

0 cosφ −sinφ

0 sinφ cosφ

 (5.2a)

AY =


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 (5.2b)

AZ =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 (5.2c)

1the spacecraft is held fixed in the frame at a desired orientation without any rotation
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This matrix A may further be suitably transformed into the other representations.

5.3 Multi-Agent Collective Control

A multi-agent system refers to a group of autonomous agents operating in a networked environ-

ment. While an individual system is controlled by its trajectory in the time dimension, denoted

by x(t) at time t, Knorn et al. (2016) represent a multi-agent system M = (x1(t,k)),(x2(t,k)) as

a two-dimensional model with system behavior x1(t,k) and network influence x2(t,k) at time t

and agent index k. n(t,k) denotes the neighbors of agent k at time t, and τ(t,k) denotes the time

of measuring this state. The system dynamics of the system M is analyzed in the time domain:

δx1(t,k) = f (x1(t,k),x2(t,k), t,k) (5.3)

where δx1 represents the continuous or discrete time derivative of x1. This system dynamics

consists of plant dynamics and a designed controller, such that:

x1(t,k) = [ξ T (t,k),ζ T (t,k)] (5.4)

where ξ (t,k) is the plant state and ζ (t,k) is the controller compensator state. On the other hand,

the network influence of M is analyzed using the derivative with respect to k:

∆x2(t,k) = g(x1(τ(t,k),n(t,k)), t,k)− x2(t,k−1) (5.5)

This network influence does not usually propagate in the network dimension, hence eliminating

−x2(t,k−1). Reaching consensus depends on the network topology for communications among

agents, which is described using n(t,k). The topology is fixed if n(t,k) does not depend on t,

switching if it varies with t taking values from a finite set, and time-varying if it varies otherwise.

39



5.3.1 Fixed Topologies

In a fixed topology, a network of single-integrator agents achieves consensus if the graph is con-

nected (undirected network) or strongly connected and balanced (directed network). Further-

more, with constant weights, consensus is achieved for a directed network of single-integrators

or double-integrators if the graph contains a spanning tree. Further research has also dealt with

consensus in cyclic graphs and cactus graphs2.

5.3.2 Switching Topologies

Switching topologies are non-fixed topologies where edges may be added or removed from the

graph under varying circumstances, hence switching between elements of a finite set of graphs,

contrary to time-varying topologies where an infinite set of arbitrary graphs is considered. A

switching graph can be represented as:

Gζ (t) = {V ,Eζ (t)} (5.6)

where it consists of a node set V = {1,2, ...,n} and a time varying edge set Eζ (t) ⊆ V ×V ,

where ζ (t) : [0,∞)→H is piecewise constant and the set H = {1,2, ..., h̄} includes all pos-

sible graphs (h̄ is some positive integer), s.t. the graph switches at discrete time instances.

Average consensus can be asymptotically achieved for a network of single-integrators with

switching topologies taken from a finite collection of strongly connected and balanced directed

graphs. Ren and Beard (2005) have also shown that consensus can be achieved if the union of

the collection of interaction graphs over some time has a spanning tree frequently enough.

5.3.3 Time-varying Topologies

A particularly interesting problem with time-varying topologies are agents following the ‘near-

est neighbor rule’; i.e., agents that interact with agents within a limited sensing radius, hence

having an undirected graph topology. Jadbabaie et al. (2003) show that discrete-time linearized

2graphs where a pair of distinct simple circuits have at most one common vertex
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network of such autonomous agents achieves consensus if the joint connectivity condition is

satisfies; i.e., if there exists an infinite sequence of continuous, non-empty and bounded time-

intervals such that the union of the collection of graphs across each time interval is connected.

Furthermore, Tanner et al. (2003) prove that such a network of continuous-time double integra-

tors achieves consensus regardless of switching as long as the graph remains connected.

5.4 Attitude Synchronization in Communication Networks

with Switching Topology

Attitude synchronization is the problem of bringing multiple spacecraft attitudes into an agree-

ment; i.e., aiming to maintain the relative attitude between spacecraft in a predefined way (Yu

et al. (2019)). This lies in contrast to attitude tracking where multiple spacecraft track a com-

mon reference as a virtual leader in a cooperative way, where this reference is only available to

a portion of spacecraft (Ren (2010)). While the latter is useful for our application of attitude

consensus, the former can perform the same task at lower complexity of control with the only

extra requirement for the central spacecraft to be capable of maintaining its attitude with respect

to the earth-centered inertial frame of reference.

In most cases, control algorithms proposed for the attitude synchronization problem are appli-

cable only using fixed network topology; i.e., each initial communication link between distinct

spacecraft is maintained all the time. This will not be possible in our problem due to the ex-

changes and rotations of the formation layers and hence it is required to develop coordinated

attitude control algorithms using switching topologies. Although previous research involving

switching topologies has required switching between (quasi-strongly) connected subgraphs3,

Liu et al. (2020) proves the validity of the consensus algorithm for switching topology that sat-

isfy uniform joint connectivity (for synchronization) or uniform joint quasi-strong connectivity

(for tracking), hence allowing spacecraft to lose contact with others for some time. As a result,

it is possible for spacecraft to perform attitude synchronization via consensus even before reach-

ing the unorganized pre-assembly stage (i.e., positional convergence), and following positional

convergence, attitude synchronization is guaranteed.

Consider a group of n spacecraft, each of whose orientation in the body-fixed frame Bi is rep-

3each spacecraft has a connection link with at least one of its neighbors all the time
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resented with respect to an inertial frame I by the three Tait-Bryan angles for yaw ψi, pitch

θi, and roll φi, and rotation matrix Ri represents the rotation from Bi to I . The coordinated

attitude synchronization problem requires developing a distributed control algorithm such that

all the spacecraft attitudes pi = (ψi,θi,φi) reach a synchronization over a switching network

(Liu et al. (2020)):

lim
t→∞

(pi(t)− p j(t)) = 0, lim
t→∞

ωi(t) = 0, ∀ i, j ∈ V (5.7)

The switching graph is assumed as undirected and uniformly jointly connected. Now, the space-

craft formation does not require all attitudes to be equal to each other but to be equal to some

predefined attitude exclusively defined for the spacecraft with respect to the attitude of the cen-

tral spacecraft in terms of its position in its present layer and its final layer number. Due to the

initial assumption that the central spacecraft is capable of measuring its own attitude in the iner-

tial frame of reference, it will be capable of maintaining its own attitude at the predefined value;

i.e. (0.0,0.0,0.0). Other spacecraft will follow the above rule where, instead of representing

the actual spacecraft attitude, pi is given as pi = qi−qi, f where qi is the spacecraft attitude and

qi, f is the required attitude that it needs to reach. Here, each spacecraft follows the following

consensus law:

pi,n+1 = ∑
j∈Ni

ai j
(

pi,n− p j,n
)

(5.8)

where N〉 represents the neighborhood of the spacecraft i. This can also be written in terms of

the actual spacecraft attitudes as:

qi,n+1 = ∑
j∈Ni

bi j
((

qi,n−qi, f
)
−
(
q j,n−q j, f

))
(5.9)

This law stands independent of whether qi and q j are measured in the inertial frame or in the

body frame since the subtraction qi− q j will cancel the extra element that arises due to the

transformation. Hence, spacecraft i is not required to know its attitude or the attitude of its

neighbors in the inertial frame. It suffices for the spacecraft to be capable of detecting the

attitude of its neighbors with respect to its own body frame.
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(a) 2 Layers (b) 3 Layers

Figure 5.1: Communication Topology

We now implement this consensus law for the spacecraft formation. The communication topol-

ogy is depicted in Fig. 5.1. Although this remains stationary, each individual spacecraft need

not have the same neighborhood due to layer rotations and exchanges that are performed to

reach the final arranged pre-assembly as explained in Section 4.5. As a result, we obtain the

result as shown in Fig. 5.2 with suitably chosen values for the weights of the system.

(a) Yaw ψi
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(b) Pitch θi

(c) Roll φi

Figure 5.2: Attitude Consensus

The roll of all spacecraft is set to zero since all segments of the telescope should be capable of

docking along a line (edge of a hexagon for the JWST design). Secondly, there are two values

for pitch, each of which correspond to a layer of the formation (greater θ implies higher layer

number). For a spacecraft on the layer l, this is equal to the angle φl =
π

2 −θl from Fig. 4.4.

The yaw of a spacecraft on the layer l (with numLayerAgents spacecraft in the layer) at position

i is given by the angle 2πi
numLayerAgents . We observe from Fig. 5.2a that there is a transition in the

yaw of two spacecraft after reaching the first consensus. This is due to the IFMEA rotation-

exchange process that occurred right before the transition. This change is not reflected in the

roll since it is zero for all spacecraft and not in the pitch since each spacecraft aligns itself to

the pitch corresponding its own geometry right after positional convergence irrespective of its

present layer number.
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5.5 Summary

This chapter has introduced some aspects of attitude dynamics, especially the three commonly

used rotations: ‘yaw’, ‘pitch’, and ‘roll’. Following a presentation of previous work on multi-

agent control, the concept of attitude synchronization is discussed considering a switching com-

munication topology. We have implemented a corresponding control law in the spacecraft for-

mation framework wherein the above mentioned rotations are defined with respect to the actual

layer number and present location of each spacecraft. Here, we incorporate from previous

research that attitude synchronization is convergent in switching topologies and, since the com-

munication graph is fixed once all spacecraft attain their final positions, they will converge to

the attitude dictated by their positional characteristics.
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Chapter 6

Final Remarks

6.1 Conclusion

I n this research, we have developed a framework to construct a large telescope in orbit via

decentralized control of multiple spacecraft that each host a segment of the telescope. This

pipeline deals with the convergence of both the position and the attitude of all spacecraft to

values computed based on their physical convergence and final position. Following the space-

craft’s position and attitude convergence to the organized pre-assembly stage, we propose that

they eject tethers similar to the proposal by Foust et al. (2017) and dock with each other. Fi-

nally, the tethers will be pulled back, hence drawing the spacecraft closer and hence effectively

forming the telescope.

While tether-based autonomous rendezvous and docking are useful for telescope assembly, they

can also be utilized (as suggested by Roa et al. (2017)) for other applications such as space sta-

tion assembly (with fewer instrument disturbances and higher structural integrity), starshade

assembly, construction of space infrastructure, and deployment of giant and more sensitive

antennae (for high communication speeds). The algorithms proposed in our research can be

suitably modified to match the requirements of the mission. The fields of spacecraft forma-
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tion flying and in-orbit decentralized construction have been dealt with in research for several

years. We look forward to the materialization of this concept and the subsequent development

of human colonization in space.

6.2 Future Prospects

As noted in Chapter 2, the conversion of time anomaly to time has no analytical solution and

hence incorporates an approximation. This conversion is valid for our problem due to the short

period of operation; however, a superior conversion technique needs to be adopted for more

prolonged problems for which the solution time is comparable to the orbital period.

Secondly, while the glideslope rendezvous algorithm has been adopted in our research for the

translation of spacecraft to their target locations, further research based on this concept (Ariba

et al. (2016), Ariba et al. (2018)) primarily dealing with minimization of fuel have inadvertently

developed a solution to constrain the motion of a spacecraft within a rectangular corridor as

depicted in Fig. 6.1 and hence prevent collisions with neighboring spacecraft. While we have

not accounted for the physical size, this research may be used to consider the same and prevent

neighboring spacecraft from approaching within a certain distance until the stage of tethered

docking.

Figure 6.1: Rectangular Corridor of Decreasing Width (Ariba et al. (2018))

Finally, we had noted in Chapter 3 that a hybrid algorithm consisting of the distributed greedy
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algorithm until the graph is complete and the ZSP auction algorithm after that will optimize

the trajectory of all spacecraft. However, when the spacecraft are far from each other, the cen-

tral spacecraft, which was previously considered to contain powerful communication systems,

may be limited in capability and may not send multiple signals with very high intensity to all

the spacecraft due to distance-based constraints. In such a scenario, prior to using the greedy

algorithm, the spacecraft system may adopt some form of broadcast control wherein a single

command from the central spacecraft is used by all spacecraft to move closer. This technique

has been suggested for homogeneous agents by Das and Ghose (2009). The work performed by

this research will suffice for our application since IFMEA will be performed after attaining the

unorganized pre-assembly positions.

Alternatively, although our research has considered the LVLH frame of a centralized spacecraft

to consider collision avoidance, the spacecraft may adopt decentralized frames of reference

when they are farther away from each other. Hence, each spacecraft moves closer to its neigh-

bors, and subsequently, the distances between them decrease. The centralized LVLH frame

method should be restored when the inter-spacecraft distances are small to prevent collisions

between spacecraft that follow different reference frames.
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Appendix A

Comparison of the Algorithms used for

Positional Convergence

I n the following figures, ‘Hungarian Algorithm’ refers to the ‘Distributed Hungarian Al-

gorithm’, ‘Greedy Algorithm’ to the ‘Distributed Greedy (Handshake) Algorithm’, and

‘Distributed Algorithm’ to the ‘ZSP Auction Algorithm’.

(a) High communication capability
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(b) Medium communication capability

(c) Low communication capability

Figure A.1: Comparison of the Algorithms: Case A

(a) High communication capability

(b) Medium communication capability
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(c) Low communication capability

Figure A.2: Comparison of the Algorithms: Case B

(a) High communication capability

(b) Medium communication capability

(c) Low communication capability

Figure A.3: Comparison of the Algorithms: Case C
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