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Abstract

The social nature of humankind demands communication and transportation at extremely high

rates. Over the 20th and 21st centuries, we have witnessed several advancements in these fields,

not only regarding the front-end devices, but also with respect to the satellites that facilitate fast

communication and localization. These satellites require to form formations at precise locations

with accurate attitudes and velocities. However, controlling them from a ground station on earth

does not provide the required amounts of accuracy due to the non-zero communication lags and

possibilities for the lack of communication channels.

This calls for the necessity of a decentralized formation algorithm between the satellites to

coordinate themselves for human activities. It is also required that the satellites are capable

of aligning themselves based on the collective decisions made by the group. As a result, each

satellite requires an attitude control mechanism to control their heading and angular velocities.

This should be blended with the formation control algorithm.

This report deals with studies that have been on these two topics individually and collectively.

Attitude control and maneuver strategies have also been collected from a renowned textbook in

the field. Following this, the results obtained in the studies are explained along with possible

scopes of improvement. Finally, the report provides a picture of how research on this field can

move forward in the future with the ideas obtained from the above sources.
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Chapter 1

Introduction

1.1 Background

I t is an everyday phenomenon to see how ants run about searching for food and other re-

sources. Usually, anything on the ground is picked up within a few minutes and transported

to an ant colony several meters away. And this task is usually not carried out by a single indi-

vidual but by tens if not hundreds and thousands of ants, hence making the entire process faster

and more efficient. It is quite impossible to imagine a queen ant or another form of centralized

center dictating commands to each ant on the location, quality and size of the food source. Yet,

as shown in Figure 1.1, they manage to bring their dinner home following an on-site party. This

is an ideal example for decentralized control.

The motivation from ants can be extrapolated into human activities. Man has always required

a reliable source of communication, and in the latest times, has come up with satellite constel-

lations such as the famous Iridium constellation and SpaceX’s upcoming Starlink constellation

to manage communication across the planet. Future missions involving multiple spaceships

traveling to extraterrestrial bodies will similarly utilize similar forms of control for proper com-

munication and to remain in the proper trajectory. However, individual satellites and spaceships
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will also require mechanisms of their own to maneuver themselves, hence necessitating the need

for proper attitude control techniques which need to be integrated with decentralized formation

algorithms for achieving the desired goals.

Figure 1.1: Ants transporting sugar crystals

1.2 Motivation

• Decentralized formations, when compared to centralized equivalents or to conglomer-

ated modules, can perform tasks at higher rates and with higher efficiency, while usually

utilizing smaller energy levels.

• Decentralized formation control is an active area of research in control theory due to the

constant need for better algorithms and techniques to achieve desired trajectories with the

least number of constraints.

• Despite the practical scope of the field, there is very little research on the physical imple-

mentation of novel algorithms while incorporating spacecraft dynamics.
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1.3 Research objectives

This thesis presents a conglomeration of ideas in the fields of spacecraft attitude control along

with decentralized formation control. The information described in the thesis is based on a

literature survey of several publications in these fields as well as the reading of relevant por-

tions from a textbook on spacecraft dynamics and control. Furthermore, possible aspects of

development are also presented based on the work performed in these resources.

1.4 Thesis outline

The subject matter of the thesis is presented in the following five chapters,

X Chapter 2 gives an overview of relevant topics on spacecraft attitude control as learned

from ‘Spacecraft Dynamics and Control’ by Marcel J Sidi. Ideas specific to the project

are described in detail along with relevant peripheral information.

X Chapter 3 elucidates the basic principles used in relevant literature on multi-agent forma-

tion control along with the corresponding algorithms and schemes, and Chapter 4 gives

detailed explanations on previous research in this field that had been developed with the

objective of spacecraft formation flying and similar outer-space-based operations.

X Chapter 5 describes recent developments in the field of attitude control, hence linking to

the traditional approaches adopted in earlier research that has been incorporated in the

textbook (described in Chapter 1).

X Chapter 6 discusses in detail the simulation results obtained from algorithms as explained

in the corresponding papers from chapters 4 and 5.

X Chapter 7 provides concluding remarks on the research works that are discussed through-

out the report, along with the pros and cons of the techniques used in them.

X Chapter 8 gives an explanation of my learnings from the project and the directions in

which it can further be progressed. Also discussed are the possible aspects in which the

schemes discussed in the publications may be improved to provide superior results.
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Chapter 2

Traditional Concepts on Spacecraft

Attitude Control

2.1 Introduction

This chapter is based on the reading of the textbook on ‘Spacecraft Dynamics and Control: A

Practical Engineering Approach’ by Sidi (1997). Relevant information has been described in

detail and supporting concepts have been explained as well.

2.2 The Spacecraft in Consideration

The theories, computations and statements made in the book revolve around the design of a

geostationary satellite, although parameters vary with context. The first chapter begins by de-

scribing a geosynchronous communications satellite that minimally consists of a central body,

solar arrays, an antenna tower, and controller and attitude sensors. The AOCS hardware of the

satellite may include a reaction bipropellant thrust system, momentum wheels, horizon sensors,
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sun sensors, gyros, etc. The mission sequence consists of launch into geosynchronous transfer

orbit (GTO), transfer to geostationary orbit (GEO), calibration of the AOCS, and finally the

preparation of the satellite for the actual GEO mission. The apogee boost motor (ABM) is used

for transfer of orbits.

2.3 Orbit Dynamics

2.3.1 A Revision of Physical Definitions, Laws and Theorems

Newton provided three laws of mechanics and one for gravitation attraction. Kepler further

stated three empirical laws: the orbit of a planet is an ellipse with the sun at one focus; the

radius vector drawn from the sun to a planet sweeps equal areas in equal time intervals (the law

of areas); and, the cube of the planetary period of revolution is proportional to the square of

the mean distance of the planet to the sun. The moment of a force F about the origin O on a

particle m with position vector r is given by M = r×F. The moment is equal to the time rate of

change of its moment of momentum or angular momentum h, irrespective of whether the mass

is variable or the force is non-conservative. Angular momentum remains constant for motion in

a force field characterized by an inverse square law. For µ = GM,

d2r
dt2 − r

(
dθ

dt

)2

=− µ

r2

Using substitutions and further mathematical formulation, we get 1
r = u = µ

h2 + ccos(θ −θ0),

where c is the integration constant calculated from the total energy per unit mass E = v2

2 −
µ

r .

Hence we obtain E = h2c2

2 −
µ2

2h2 , giving c = µ

h2

√
1+2E h2

c2 .

We define eccentricity as e=
√

1+2E h2

c2 , giving us: E =(e2−1) µ2

2h2 . Replacing the substitution

u = 1
r gives us the final equation for Keplerian orbits (p = h2

µ
= semi-latus rectum):

r =
p

1+ ecos(θ −θ0)

For an elliptic orbit, the shortest and longest radius vectors between the prime focus and a point

on the ellipse have lengths rp = p/(1+e) and ra = p/(1−e) respectively, and the corresponding
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points are called periapsis and apoapsis respectively. Eccentricity is related to these lengths as

e = ra−rp
ra+rp

. Parabolic orbits represent the orbits adopted by a spacecraft while escaping a planet’s

gravitational field, giving the escape velocity from v2 = 2µ/r. Hyperbolic orbits are useful for

transplanetary spacecraft voyages. For θ and ψ defined as the true anomaly and the eccentric

anomaly respectively, we get: tan(θ/2) =
√

1+e
1−e tan(ψ/2). Hence,

r = a(1− ecosψ)

2.3.2 Definition of Parameters for Keplerian Orbits in Space

An inertial reference frame can be defined for an earth-orbiting spacecraft as follows: the origin

is at the center of mass of the Earth; the Z axis is the axis of rotation of the Earth in the positive

direction; the X axis is the vernal equinox vector formed by the intersection of the equatorial

plane with the ecliptic plane (plane of Earth’s orbit around the Sun) at 22.5◦; and the Y axis is

defined by completing the orthogonal right-handed system. The X axis intersects the celestial

sphere at the vernal point or first point of the Aries (à).

The classical orbit parameters are given by a vector α with components:

• a: the semi-major axis of the ellipse,

• e: the eccentricity of the ellipse,

• i: the inclination, i.e., the angle made between the orbit and the earth’s equatorial plane,

• Ω: the right ascension of the ascending node, i.e., the angle in the equatorial plane that

separates the node line from theX� axis,

• ω: the argument of perigee, i.e., the angle between the radius vector of the moving body

(r) and the the radius vector of the perigee (rP ), and

• M = n(t− t0): the mean anomaly, where n is the mean motion.

where the node line is the line of intersection of the orbital plane and the equatorial plane. These

parameters are represented in Figure 2.1:
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Figure 2.1: Classical Orbit Parameters (Sidi (1997))

2.3.3 Perturbed Orbits: Non-Keplerian Orbits

The orbit parameters are not constant and the derivative of each parameter can be written as

functions that constitute the Gauss planetary equations when solved for arbitrary perturbing

forces. When the perturbing forces considered for the Gauss equations are conservative, i.e.

derived from a scalar function as Fp = −∇U(r), the equations can be simplified to give the

Lagrange equations for the differential change of the orbit parameters.

Earth-orbiting satellites have perturbed orbits predominantly from the difference of gravita-

tional potential at different points of the orbit caused by the non-homogeneity and oblateness of

the Earth. A third body, such as the sun or the moon, can cause further changes in the Keplerian

orbit parameters, transforming to an n-body problem. The corresponding conservative perturb-

ing forces which change the inclination of the orbit of geostationary spacecraft.

Non-conservative perturbing forces include solar pressure which cause changes to the eccen-

tricity of the orbit, and atmospheric drag which decreases the major axis of the orbit, causing

the spacecraft to deorbit. Solar pressure exerted by the sun in the form of solar radiation (elec-

tromagnetic waves) and solar wind (ionized nuclei and electrons) can be ignored in low orbits

due to aerodynamic perturbing forces, but need to be considered in high-altitude orbits.
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2.3.4 Perturbed Geostationary Orbits

Geosynchronous orbits are orbits whose orbital period are equal to the period of revolution of

the earth about its own axis of rotation. A geostationary orbit is a geosynchronous orbit whose

inclination is zero or close to zero and eccentricity is very small. The mission may require the

satellite to be fixed in an apparent position with respect to the earth. The right ascension Ω of

such equatorial orbits is ill-defined, due to which the orbit parameters are redefined as:

• a: the semi-major axis of the ellipse,

• ex = ecos(ω +Ω) and ey = esin(ω +Ω) from the eccentricity vector e,

• ix = icos(Ω) and iy = isin(Ω) from the inclination vector i, and

• lm = M +ω +Ω− θG(t): the mean longitude; i.e., the angular location of the satellite

relative to the Greenwich meridian,

where θG(t) (Greenwich meridian siderial time) is angle between X� and the meridian, and

the sidereal angle of the satellite is given as α = Ω+ω +θ .

2.3.5 Euler-Hill Equations

When two satellites move in almost identical orbits and are very near to each other, the coor-

dinate frames of reference are chosen to be non-inertial, with the origin fixed at and moving

with the center of mass of one satellite. The coordinates of the other satellite are calculated in

this moving coordinate frame, hence describing the relative motion of satellites in neighboring

orbits. These equations of motion of the second satellite with respect to the first are called the

Euler-Hill equations or the Hill equations. This mechanism can be used to solve problems in-

volving small perturbations (such as drag forces), the relative motion of neighboring satellites,

and the rendezvous problem between two spacecraft.

Consider two satellites at radius vectors r1 and r2. We have ρ = r1− r2. We know that

r̈1 =−µr1/r3
1 and r̈2 =−µr2/r3

2 +f , from which we get:

ρ̈=
µ

r3
1

(
−ρ+3(r1 ·ρ)

r1

r2
1

)
+f +O(r2) =⇒ ẍ−2nẏ−3n2x = fx, ÿ−2nẋ = fy, z̈−n2z = fz

8



for the components of ρ and f , where x and y are the plane distances between the two neigh-

boring satellites, z is the off-plane distance, and n is the almost constant angular velocity of the

reference orbit. Solving the first two dependent equations and the independent equation for z

gives us the required relations between the two satellites. x(t) and z(t) are assumed to be small,

while y(t) is a part of an arc on the orbit in the direction of motion of the satellite.

2.4 Orbital Maneuvers

Almost always, a satellite is launched into the transfer orbit by a launch vehicle, following which

it performs orbital maneuvers to reach the desired orbit. Orbits may be adjusted by single or

multiple thrust impulses, of which the latter can effect any desired orbit change. Adjustments

are done instead of placing it in the exact orbit to reduce fuel consumption and hence increase

the capable weight for useful payload. During an orbit change, thrust is applied for some time.

Due to the non-impulsive nature of thrust, some velocity is lost since the thrust direction during

burns is not constant but rather angled with respect to the mean thrust direction.

2.4.1 Single-Impulse Orbit Adjustment

The velocity of a spacecraft at a perigee can be calculated as Vp =

√
2
(

µ

rp
− µ

rp+ra

)
. The altitude

of perigee or apogee can be changed by using the velocity at perigee to calculate the required

difference of velocities at two apogees. The spacecraft can similarly change the semi-major axis

and the eccentricity at the apogee. However, there are limits on the values of semi-major-axis

and eccentricity that can be achieved with single-impulse thrust adjustment. It is required that

2a2 ≥ r1 and rp2 = a2(1− e2) < r1 < a2(1+ e2) = ra2 for the satellite to have a real value of

velocity, where r1 is the radius vector of the point of impulse application.

Some communications satellite systems on elliptical orbits require to have an apogee footprint

at a particular geographical latitude with an inclination of 63.435◦. This requires a change in

the argument of perigee ω , usually without varying the semi-major axis a and the eccentricity e,

and hence keeping the orbit shape constant but rotating it in the orbital plane keeping the perigee

point fixed. This is again achieved by calculating the required velocity difference, although the

absolute value of velocities remain constant.

9



2.4.2 Multiple-Impulse Orbit Adjustment

Restrictions in modifying orbital parameters using a single impulsive thrust limits the initial and

the final orbits to have at least one common point. This can be avoided using multiple-impulse

orbit adjustments. Hohmann transfer between orbits allow transfer between circular orbits with

minimum fuel consumption. This is equivalent to minimizing the total change in velocity, ∆V .

This transfer is optimal as long as the ratio of the radius of the larger orbit to that of the smaller

orbit is less than 11.8. It involves an intermediate transfer orbit, where the perigee lies on the

smaller orbit and the apogee on the larger orbit. Assuming impulsive velocity changes, the total

change in velocity is computed as the sum of the changes in velocity required for entering the

transfer orbit from one circular orbit and leaving the transfer orbit into the other circular orbit.

A similar mechanism is used to transfer from one elliptic orbit to another coplanar and coaxial

orbit; i.e., impulses are applied at the perigee to enter and the apogee to leave the transfer orbit.

Similarly, multiple-impulse orbit adjustments can be performed to maintain the altitude of low-

orbit satellites. The semi-major axis a decreases due to atmospheric drag. The required change

in velocity ∆V for an average disturbing drag force Fd is performed as Fd∆t = m∆V = (mi−

m f )gIsp = ∆mpropgIsp since the final mass m f = mi(1−∆V/gIsp).

2.4.3 Geostationary Orbits

The transfer of a geostationary satellite from GTO to GEO consumes fuel as much as approxi-

mately the dry weight of the satellite in one to four weeks, while the mission stage after reaching

GEO of more than ten years consumes about 10% to 20% in ten years. Wasting 2% of fuel in the

transfer equates to about a year loss in communications. Minimizing fuel consumption during

orbital changes depends on the accuracy of delivering ∆V to the satellite. Since the GEO is a

circular orbit on the equatorial plane, it is ideal to choose an equatorial launch site. When this

is not possible, two tasks need to be achieved individually or simultaneously to reach GEO:

• Zeroing the Inclination of the GTO: This is equivalent to changing the spatial attitude of

the orbit plane by the inclination i with all other parameters (including speed) fixed. With

Vf = Vi = Va where Va is the velocity at apogee, the change in velocity is given by the

vector from Vi to Vf ; i.e. ∆V1 = 2Va sin(i/2)
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• Circularization of the GTO: This task involves the spacecraft transferring from an elliptic

orbit to a circular orbit, both meeting at the apogee. To raise the perigee altitude to

geostationary orbit, a change of velocity is applied at the apogee as:

∆V2 =Vcir−Va =

√
µ

rcir

(
1−

√
2rp

rcir + rp

)

• Combined GTO-to-GEO Maneuver: Two individual orbital changes spending a total of

∆V = ∆V1 +∆V2 is not fuel efficient. As a result, the two changes can be merged into a

single ∆V stage: ∆V 2 =V 2
GTO +V 2

GEO−2V 2
GTOV 2

GEO cos i

GTO-to-GEO orbital maneuvers are generally executed in more than one firing. This may cause

attitude errors during the ∆V process, hence diverting the orbit of the satellite. A one-shot firing

can equate to a loss of about 3.5 years of mission stage due to fuel consumption. ∆V is hence

divided into two or more smaller ∆V s.

The parameters that change with time owing to perturbing forces are balanced by the station

keeping (SK) of the geostationary orbit that predominantly consists of longitude (E-W) SK,

inclination (north-south) SK, and eccentricity corrections. These corrections can be done by

sequentially adding velocity components: ∆VR along the radius vector, ∆VN normal to the orbit

plane, and ∆VT tangential to the velocity vector. The parameter changes corresponding to the

required velocity component along each axis is calculated and applied on the spacecraft.

Fuel budgets for satellites are determined based on the maneuvers from the transfer orbit to

the final mission orbit and on the corrections required to stay in the mission orbit. This can be

expressed in terms of ∆V , since the fuel mass to be expended depends on the initial mass of the

satellite. The exact mass of required fuel depends on the year epoch and varies from spacecraft

to spacecraft considering the various limits placed on the orbit parameters.

2.5 Attitude Dynamics and Kinematics

Consider a rigid body moving in space with a frame of reference whose origin coincides with

the center of mass of the body. We know that vi = v0 +ω× ri and ∆T = 0.5v2(∆m) from

which we get the kinetic energy to be expanded to translational and rotational components as:
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T = 1
2v2

0M + 1
2
∫
(ω×r) · (ω×r)dm = Ttransl +Trot from which we get Trot =

1
2ω

T [I]ω. Due

to the complexity of equations arising from the non-diagonal terms of the inertia matrix, it is

usually transformed into a diagonal one whose diagonals give the principal moments of inertia:

Ix, Iy, and Iz. The moment of inertia about any instantaneous axis of rotation 1ξ is given as

Iξ = a2
xIx +a2

yIy +a2
z Iz, where ax =

ωx
ω

and so on.

Euler’s moment equation gives M = ḣI = ḣB +ω× ḣ. For the principal axes of inertia, we

get Mx = Ixω̇x +ωyωz(Iz− Iy) and so on, which are nonlinear equations without an analytical

closed-form solution but can be solved under certain conditions such as axisymmetricity. On

solving for asymmetric bodies about the principal axes where no external are applied, it can be

found that angular motion is stable when the body is spinning about its axis of minimum (minor

axis) or maximum (major axis) moment of inertia.

2.5.1 Nutation

Whenever the bodyZB axis deviates from the momentum vector h, the angular velocity vector

component ωxy rotates about h at the nutation angle θ , where tan(θ) = Ix
Iz

tan(γ). The two

vectors form two cones, the body cone and the space cone respectively. With h constant, if

the body spins about the minor axis and there is some internal energy dissipation that tends to

decrease the rotational kinetic energy to its minimum, the body will transfer the spin of rotation

to the major axis. Hence, with non-zero energy dissipation, a spinning body is in stable angular

motion only if it rotates about the major axis.

2.5.2 Motion of a Non-spinning spacecraft

Reference coordinate systems change for a spacecraft depending on the task that it is involved

in during the given period of its life. We define a reference frame in which the spacecraft is to

be three-axis attitude-stabilized. The orbit reference frame is one whose origin moves with the

cm of the satellite. ZR (’R’ for ’reference’) points toward the cm of the earth, XR is in the

direction of the velocity of the spacecraft in the plane of the orbit and perpendicular to ZR, and

YR is normal to the local plane of the orbit and completes a three-axis right-hand orthogonal

system. ωRI represents the angular velocity vector in this frame, relative to the inertial axis
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frame. The inertial axis frame has its origin at the cm of the earth. The satellite’s attitude with

respect to a reference frame can be defined using a direction cosine matrix [A], by a quaternion

vector q, or by Euler angles (φ about XB, θ about YB, ψ about ZB).

We need to know the angular velocities of the body axis frame wrt the reference axis frame and

the velocity of the body axis frame wrt the inertial axis frame. From ωBR = pi+ qj+ rk and

ωRI = ωRIx1x +ωRIy1y +ωRIz1z, we get ωRI expressed in the body frame as ωRIB = ωRIBxi+

ωRIByj+ωRIBzk, giving the angular velocity of the body frame wrt the inertial frame as ωBI =

ωBR +ωRIB. Here, ωBR helps us calculate the Euler angles of the moving body wrt any defined

reference frame in space.

Axes transformations can be performed in any order. We consider three in particular: ψ →

θ → φ (rotation about ZB, then about the new YB1, and then about XB2), θ → φ → ψ , and

φ → θ → ψ . The former gives a direction cosine matrix as:

[A321] = [Aψθφ ] = [Aφ ][Aθ ][Aψ ]

which is the product of the three individual direction cosine matrices. The first rotation gives

a derivative which is subject to all three rotations, the second to the latter two and the third to

the last. As a result, the body angular rates, p, q and r can be computed by multiplying the

corresponding direction cosine matrices to the derivative vectors and adding them. It can be

noticed that the derivatives show a singularity at some particular angle for a rotation, such as

θ = 90◦ for the first and the third transformation schemes and φ = 90◦ for the second, causing

phenomena such as gimbal locks. This can be eliminated by using the quaternion terminology.

Given the initial direction cosine matrix [A(0)], we can find the time evolution of the direction

cosine matrix by integrating

d
dt
[A] = [Ω][A] where [Ω] =


0 ωz −ωy

−ωz 0 ωx

ωy −ωx 0


. This integration is excessively time-consuming and instead the integration of the quaternion

vector is more common. The corresponding differential equation for the quaternion system is
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given as

d
dt
[q] =

1
2
[Ω′][A] where [Ω′] =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0


.

In order to find the evolution of the Euler angles, we need to know ωBR = ωBI −ωRIB. ωBI

can be computed using inertial sensors such as precision rate integrating gyros. In order to

find ωRIB, we observe the reference frame coordinates as k = − r
|r| , j =

v×r
|v×r| , and i = j ×

k. For a Keplerian orbit, we can see that a positive clockwise rotation δ about j gives us

a ωRI =
[
0
(
−1

r2|v×r|v · [(r ·v)r− (r2v)]
)

0
]T

, which, in a circular orbit simplifies to ωRI =

[0 −jω0 0]T where ω0 =
v
r .

2.5.3 Attitude Dynamics Equations of Motion for a Non-spinning Satellite

We consider the effect of momentum exchange devices, particularly the reaction wheel and the

momentum wheel. Moreover, external inertial moments due to aerodynamic, solar, gravity or

reaction torque factors contribute to the total external moment M acting on the body which is

equal to the inertial momentum change of the system.

The external torque is given as T = ḣI = ḣ+ω×h, where the momentum of the entire system is

h=hB+hw consisting of the rigid body momentumhB = [hx hy hz]
T and the moment exchange

device momentum hw = [hwx hwy hwz]
T . T can be broken down as the control moments used to

control the attitude motion Tc and the moments from disturbing environmental phenomena Td

The gravitational moment is inherent in low-orbit satellites. An asymmetric body subject to

a gravitational field will experience a torque that tends to align the axis of least inertia in the

direction of the field. Considering the force to be given asR=−R0kR wrt the inertial axis, i.e.

[Rx Ry Rz]
T = [Aψθφ ][0 0 −R0]

T wrt the body axes, and the gravitational force exerted on a

mass element dF = −[(µdm)/|r|3]r (r =R+ρ is the distance from the earth’s cm to mass
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dm), we get the gravity gradient vector as

G= [Gx Gy Gz]
T =

3µ

R5
0

∫
M
[R ·ρ][ρ×R]dm

which on solving also gives G in terms of the direction cosine matrix elements. The hence

obtained values for the Gx, Gy, and Gz can be linearized using small-angle approximations

giving Gx = 3ω2
0 (Iz− Iy)φ , Gy = 3ω2

0 (Iz− Ix)θ and Gz = 0 where ω0 =
√

µ/R3
0 is the angular

orbital velocity of the body (orbital rate or frequency) in a circular orbit of radius R0.

The relation given earlier between ωBI =ωBR+ωRIB and the Euler angles can be linearized for

small Euler angles by linearizing the relation for ωRIB given ωBR = [p q r]T :


ωRIBx

ωRIBy

ωRIBz

=


1 ψ −θ

−ψ 1 φ

θ −φ 1




0

−ω0

0

=


−ψω0

−ω0

φω0


For small Euler angles, p≈ φ̇ , q≈ θ̇ and r≈ ψ̇ , giving [ωx ωy ωz] = [(φ̇−ψω0) (θ̇−ω0) (ψ̇ +

φω0)]. The total external moment can be developed in terms of the Euler angles and other

known values using this information. Here we consider the momentum components of reaction

wheels with axes of rotation along the XB, YB, and ZB body axes which are expressed in terms of

the moments of inertia and the angular velocities of the individual wheels. Attitude control of a

spacecraft can be achieved by controlling the angular accelerations of the wheels which act as

internal torques exerted on the satellite. External torques are also incorporated into the control

torques. In general, reaction wheels need not be aligned to the body axes, and there may be

more (or less) than three wheels, as a result of which their momenta and angular accelerations

are transferred to the body axes.
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2.6 Attitude Maneuvers in Space

2.6.1 Equations for Basic Control Laws

Several spacecraft require attitude maneuver as a primary mission task and this is formulated as

control law equations expressed in different attitude error terminologies:

2.6.1.1 Using Euler angle errors

Given the Euler angles from s/c instrumentation, we have Tdx +Tcx = Ixφ̈ [and similarly for y

(θ̈ ) and z (ψ̈)]. Hence, the control input can be written as Tcx = Kx(φcom− φ)+Kxd φ̇ , where

φcom and φE are the Euler command and error angles resp., and φ̇ is the Euler angular rate. This

is simple to develop but will not be sufficient in large attitude maneuvers because of higher-

order and cross-coordinate terms, saturation of control input and singularities at large Euler

angle values (such as φ → 90◦). Moreover, this control law gives an oscillating behavior with

large attitude commands and the angular path of the Euler axis of rotation angle is large.

2.6.1.2 Using the Direction Cosine error matrix

Considering the present attitude of the spacecraft to be given by the direction cosine matrix [AS]

and that of the desired attitude as [AT ], the direction cosine error matrix is given as [AE ] =

[AS][AT ]
T . This becomes the unit matrix when the two matrices are identical, meaning that

the desired attitude has been achieved. Moreover, for the matrix to be diagonal, all diagonal

terms should be equal to one and the other terms should be zeroed. Hence, a control law can

be developed as Tcx = Kxa23E +Kxd p (similarly for y and z), where ai jE = −a jiE , and p is the

angular velocity of the body axis in the reference frame (for damping). The error terms will be

large in the beginning of the maneuver, but will approach the Euler angle errors when the s/c

axes are aligned closer to the target axes.

2.6.1.3 Using the Euler Axis of Rotation

We can calculate the angle about the Euler axis of rotation as cos(α) = 1
2 [trace([AE ])− 1]

which gives the control law Tcx = −1
2Kx(a32E − a23E)+Kxd p. Since a single axis is involved

for rotation, the angular path is minimized. However, this law requires all six off-diagonal terms
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of [AE ] to be computed continuously.

2.6.1.4 Using the Quaternion error vector

Based on the present spacecraft attitude quaternion qS and the desired attitude quaternion qT ,

an error quaternion can be defined as qE = q−1
S qT . There is a one-to-one equivalence between

[bmAE and qE , based on which attitude control laws can be formulated as: Tcx = 2Kxq1Eq4E +

Kxd p (similarly for y and z). Computing qE requires fewer algebraic operations than computing

[bmAE , as a result of which the quaternion control law is preferred over the DCM control law.

For large attitude maneuvers, with the quaternion control law, the Euler attitude angles are

well-behaved and resemble their time responses for small attitude commands.

2.6.1.5 Body-Rate Estimation without Rate Sensors

It may not be possible to include or rely on rate gyro measurements for the three angular rates

about the body axes of the spacecraft. In such scenarios, it will be required to estimate them

from the knowledge of the quaternion vector or the DCM. This can be done by finding p, q, and

r from q̇i =
1
2 [Q][p q r]T , i = 1, ...,4, where Q =


qS4 −qS3 qS2

qS3 qS4 −qS1

−qS2 qS1 qS4

−qS1 −qS2 −qS3

, using the left pseudo-

inverse of [Q], [QL] =
(
[Q]T [Q]

)−1
[Q]T . Here, the quaternion vector is obtained in the first

place using measurements from horizon, sun, or star sensors.

2.6.2 Control with Momentum Exchange Devices

A spacecraft can control attitude by applying torque generated using several mechanisms in-

cluding earth’s magnetic field, reaction forces produced by expulsion of gas or ion particles, so-

lar radiation pressure on spacecraft surfaces, and momentum exchange devices (rotating bodies

inside the s/c) such as reaction wheels, momentum wheels, and control moment gyros (CMGs).

Using momentum exchange devices transfers angular momentum between different parts of

the spacecraft without changing its overall inertial angular momentum. Particularly, reaction

wheels provide very accurate attitude control systems with moderately fast but continuous and

smooth maneuvers and very low parasitic disturbing torques.
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Consider hw = [hwx hwy hwz] to be the momentum vector of all momentum exchange devices

inside a spacecraft body with reference to the body axes. Any device’s momentum change (say

ḣwx) will produce an equal but opposite angular torque on the body about the corresponding

body axis (here,XB). The required control torque command, ḣwx = Tcx = Kx(φcom−φ)+Kxd φ̇

(similarly for y and z), is achieved by accelerating the rotor of electrical motors aligns with the

body axes such that ḣS + ḣw = 0. The dynamics of the motors can be used to compute the volt-

age required to achieve this torque. Based on this concept, a control loop can be developed for

attitude maneuvers. However, such a system cannot independently remove angular momentum

that accumulates due to external disturbances.

Three reaction wheels aligned with the body axes are sufficient for independently controlling the

spacecraft’s attitude. However, this cannot be done if one of them becomes damaged. Hence,

a geometrical configuration can be developed with four reaction wheels on the same plane par-

allel to the XB−YB plane, separated by 90◦ to the neighbors and inclined to the XB−YB by

an angle β (to apply torques and momentum in the ZB direction as well). For a given control

vector T̂c, the components Ti from each one of the four wheels i can be computed using the

transformation between the three body axes’ command control torques and the four wheels’

command control torques as:


T1

T2

T3

T4

=
1
2


1 0 1

2
1
2

0 1 1
2 −1

2

−1 0 1
2

1
2

0 −1 1
2 −1

2




T̂cx

T̂cy

T̂cz

0


Reaction wheels provide comparatively low parasitic disturbing torques. However, attitude

sensors are no less responsible for the quality and attitude accuracy of the ACS. There are

usually two dynamic states that need to be controlled: the attitude angle θ and the attitude

stability θ̇ . This control is done using attitude sensors and angular velocity sensors.

Earth sensors, though noisy, are the most common attitude sensor. Sun sensors are also common

and are more accurate than earth sensors with lower statistical noise level. Star sensors are

the most accurate attitude sensors but are very expensive and less reliable than earth and sun

sensors with complex instrumentation and algorithms. Rate integrating gyros (RIGs) are the

most common angular velocity sensors. They are very accurate and do not dependent on the s/c
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orientation in space. On the other hand, conventional rate sensors are less accurate and are used

for rate sensing in control tasks such as rate control and damping in the ACS.

It is not possible to use earth sensors when the earth is outside the sensor’s field of view, and

star sensors are not useful during fast and large maneuvers. In such situation precise inertial

measuring units (IMUs) such as RIGs are used. Some attitude position sensor such as a star

sensor is required to accurately measure the initial conditions for the gyros’ rate integration

algorithm. It is also common for multiple attitude position sensors such as earth sensors along

with a digital sun sensor to be used to initialize fast and large attitude maneuvers, although

during the maneuver, the ACS utilizes the RIGs only.

It is possible to develop a control algorithm that integrates the attitude velocity from the RIG

to find the attitude position. However, the sensor noise at very low frequencies can become

the drift factor of the sensor, and without an actual attitude position sensor, this can lead to

a divergent attitude position error. This drift term can be eliminated by further introducing a

differentiator along with a first-order filter.

2.6.3 Magnetic Attitude Control

The earth’s magnetic field interacts with a magnetic moment generated within a spacecraft to

produce a mechanical torque acting on the spacecraft as:

TB =M ×B

whereM is the generated magnetic moment inside the body andB is the earth’s magnetic field

intensity. In order to achieve a desired torque Tc, it is required to find the magnetic moment

vector M = [Mx My Mz]
T . However, the cross-product matrix of B is singular and hence non-

invertible. This can be solved by replacing a magnetic torqrod in one or two direction with

reaction wheels.

There are a number of drawbacks to this method of control. First of all, the magnitude of

earth’s magnetic field is inversely proportional to the cube of the distance from its center as a

result of which the magnetic moment should be drastically increased for the same amount of

torque at a higher altitude. Secondly, the earth’s magnetic field depends on orbit characteristics

as well as on the location of the satellite within the orbit, especially on the inclination of the
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orbit. For example, the magnetic field for a polar orbit can be twice as strong as that of an

equatorial orbit. And this dependence needs to be included in the control algorithm. Thirdly,

the achievable levels of torques using magnetic torqrods are very limited and saturation limits

are easily attained, as a result of which the control law can be extremely non-linear. However,

the cost of a magnetic torqrod is typically one-tenth that of a reaction wheel, as a result of which

such a configuration will be much cheaper than an ACS incorporating reaction wheels.

2.6.4 Magnetic Unloading of Momentum Exchange Devices

External disturbances acting on the body of an attitude-controller s/c induce accumulation of

momentum in the momentum exchange devices leading to improper working conditions for

the wheels. This excess momentum is unloaded when it exceeds some predetermined limiting

value using magnetic torqrods and reaction thrusters. The basic control equation for momentum

unloading is

T =−k(h−hN) =−k∆h,

where k is the unloading control gain, h is the wheel’s momentum vector, hN is the desired and

nominal wheel momentum vector, and (h−hN)=∆h is the excess momentum to be removed. k

is obtained from trial-and-error due to the time-varying nature of the control system parameters,

especially earth’s magnetic field. The above equation is equated toM×B, but sinceM cannot

be directly computed, the equation is cross multiplied by B and it is assumed that M ⊥ B,

giving

M =− k
B2 (B×∆h) =⇒ T =− k

B2 (B
2
∆h−B(B ·∆h))

No torque can be obtained about the earth’s magnetic field as a result of which any excess mo-

mentum in this direction cannot be dumped. Fortunately, both the direction and the amplitude of

B vary during most incline orbits and an average removal of the excess momentum can be per-

formed although the efficiency of this operation dependent on the orbit (quite low for equatorial

orbits).
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2.6.5 Time-Optimal Attitude Control

Time-optimal control can be used to minimize the time of attitude orientation of the satellite in

space. This is particularly useful for sky observation and earth-observing satellites that require

to be oriented in a particular direction for a period of time. Transfer functions cannot be used

since the controller is drawn into heavy saturation in order to deliver the maximum physically

obtainable angular accelerations to the satellite. Satellite dynamics are usually characterized

by a linear second-order plant and a nonlinear maximum-effort or on-off controller. Practical

physical constraints such as control time delays, uncertainty in maximum control acceleration

levels, and additional time constants from satellite hardware and structural dynamics need to be

considered as well.

The basic time-optimal control about a single axis involves a bang-bang controller far from the

origin while a linear controller is used close to the origin to avoid chattering. In practice, the

activating torque T might be larger or smaller than the theoretical maximum torque Tmax used

in control equations. Owing to sampling and additional delays in the control loop, the solution

will show an overshoot in the time-behavior if T < Tmax or a time delay ∆t in the control loop

resulting in a chatter along the switching line if T > Tmax. To compensate for delays, switching

commands need to be issued before when they are required based on the maximum time delay

in the control loop.

The chapter primarily uses the reaction wheel assembly (RWA) in accurate and time-optimal

attitude control. Choosing the wheel is dependent on the performance required by the ACS in

terms of parameters such as maximum achievable torque, maximum momentum capacity, low

torque noise, and low coulomb friction torques. If it is not possible to acquire the calculated

parameters with existing commercial and space-qualified wheels, the specifications should be

lowered, which will lead to an increase in the acceleration period and a prolongation in the time

taken for attitude maneuvers.
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Chapter 3

Basic Concepts on Formation Control

3.1 Introduction

A multi-agent system refers to a group of autonomous agents operating in a networked envi-

ronment. This chapter presents the basic idea of decentralized multi-agent formation control.

The methodologies involved in the corresponding algorithms are also presented. Agents are

typically considered to be generic mathematical operators while some research consider them

as physical objects such as spacecraft or satellites along with some level of consideration of

their dynamic characteristics such as attitude and angular velocities.

3.2 Multi-Agent Collective Control

An individual system is controlled by its trajectory in the time dimension, denoted by x(t) at

time t. Knorn et al. (2016) depict multi-agent system as a two-dimensional model with system

behavior x1(t,k) and network influence x2(t,k) at time t and agent index k. n(t,k) denotes the
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neighbors of agent k at time t, and τ(t,k) denotes the time of measuring this state.

System dynamics is analyzed in the time domain: δx1(t,k) = f (x1(t,k),x2(t,k), t,k) where δx1

represents the continuous or discrete time derivative of x1. System dynamics consist of plant

dynamics and a designed controller, giving: x1(t,k) = [ξ T (t,k),ζ T (t,k)], where ξ (t,k) is the

plant state and ζ (t,k) the controller compensator state. Meanwhile, the network influence is an-

alyzed using the derivative with respect to k: ∆x2(t,k) = g(x1(τ(t,k),n(t,k)), t,k)−x2(t,k−1).

The network influence does not usually propagate in the network dimension, hence eliminating

−x2(t,k−1). The control design problem is to find suitable functions for the δζ (t,k) such that

x1(t,k) satisfies desired requirements in both dimensions.

3.2.1 Agent Dynamics

Agent dynamics can be segregated on the basis of the equations for the plant state. Research

works have dealt with dynamics based on the linearity and homogeneity of agents.

3.2.1.1 Linear Homogeneous Network

The simplest case is a group of N identical single-integrator agents in continuous time given

as dξ (t,k)
dt = u(t,k),k = 1, ...,N. The controller and the network influence are given as follows,

where ak j(t) is the (k, j)-th element of the adjacency matrix A (t):

u(t,k) = x2(t,k) =
N

∑
j=1

ak j(t)(ξ (t, j)−ξ (t,k))

This can be written in terms of the Laplacian matrix L (t) as: dξ (t)
dt = −L (t)ξ (t),ξ (t) =

[ξ (t,1), ...,ξ (t,N)]. This is described solely in the time dimension and not the network dimen-

sion. The controller causes the agents to present the collective behavior of consensus, whereby

each agent converges towards the weighted average of the states of its neighbors. This can be

generalized as dξ (t,k)
dt = Aξ (t,k)+Bu(t,k),y(t,k) =Cξ (t,k) where A, B and C are constant ma-

trices of appropriate dimensions. Discrete-time systems have also been studied.

The state equation is given as dξ (t)
dt = L ξ (t)+Bµ(t), where B describes the influence of the

external input onto ξ (t). Reachability and controllability are based on the ability to control a

subset of nodes Ic ⊂ 1, ...,N by an external input µ(t) in addition to the local control input of
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the consensus formation, whereas observability is based on the ability of an external processor

that collects information from a subset of nodes Io⊂ 1, ...,N to reconstruct the state of the entire

network from η(t) =C ξ (t), where C relates the information gathered by the processor to ξ (t).

In the above model, µ(t) can be time-varying reference signals to the agents. The dynamic

average consensus problem involves each agent tracking the average of individually measured

reference signals. Contrarily, static consensus considers a snapshot of µ(t) to initialize the agent

states following which it is ignored, resulting in the dynamic equation excluding Bµ(t).

Research on the robust stability of multi-agent systems has shown that one of the worst cases

of perturbations is an identical diagonal perturbation. On testing single integrator networks

achieving consensus for robustness to communication noise, it has been observed that systems

with lower H2 norms (Refer to Glossary) remain closer to the consensus despite the noise.

3.2.1.2 Linear Heterogeneous Network

There has been research on the synchronization problem by replacing the general values A, B

and C with local state space representation Ak, Bk and Ck for describing the dynamics of agent

k. The cooperative output regulation problem is formulated by subjecting this system to an

exogenous signal v(t) (reference input or disturbance) generated as v̇(t) = Sv(t):

dξ (t,k)
dt

= Akξ (t,k)+Bku(t,k)+Ekv(t),y(t,k) =Ckξ (t,k)+Fkv(t)

A distributed controller is designed that guarantees asymptotic stability for v = 0 and y(t,k) =

0 ∀k. This is different from the general synchronization / consensus problem since the trajectory

for each agent is defined by a real exosystem that acts as the leader that is followed by all subsys-

tems of the plant. However, this method is unsuitable when investigating plant uncertainties. On

the other hand, the virtual exosystem approach involves the heterogeneous version of the general

synchronization problem. The controller is given as: u(t,k) = Hkζ (t,k)+Kkx2(t,k),
dζ (t,k)

dt =

Fkζ (t,k)+Gkx2(t,k), where x2(t,k) = Pk ∑
N
j=1 ak j(y(t, j)−y(t,k)). Here, it is required for each

individual system along with its local control to embed an internal model of the virtual exosys-

tem v̇(t) = Sv(t) for synchronization.
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3.2.1.3 Nonlinear Dynamics

There has been some research on complex networks such as scale-free or small world networks.

However, complexity in synchronization problems have mainly arisen from nonlinear character-

istics rather than network structures. Nonlinear MASs are more concerned with control design

methodologies (possibly using nonlinear controllers) than conventional complex networks.

Velocity consensus and position consensus controllers have been proposed for networks of

agents with nonlinear heterogeneous dynamics: dξ (t,k)
dt = φk(ξ (t,k), t) + ψk(ξ (t,k), t)u(t,k),

y(t,k) = hk(ξ (t,k)). Previous research has mostly assumed the global Lipschitz condition (Re-

fer to Glossary) or passivity, but some have designed nonlinear controllers for second-order

systems without imposing these conditions. The synchronization problem for nonlinear hetero-

geneous systems described by the Euler-Lagrange equations has also been discussed.

The cooperative output regulation problem and the virtual exosystem approach have been de-

veloped for nonlinear systems as well. These involve a two-step manner involving the control

of an individual agent to its reference model and the consensus of the reference models, hence

permitting the internal model of each agent to be completely decentralized.

3.2.2 Network Topologies

Reaching consensus depends on the network topology for communications among agents, which

is described using n(t,k). The topology is fixed if n(t,k) does not depend on t, switching if it

varies with t taking values from a finite set, and time-varying if it varies with t otherwise.

3.2.2.1 Fixed Topologies

A network of single-integrator agents achieve consensus if the graph is connected (undirected

network) or strongly connected and balanced (directed network). For a fixed topology with

constant weights, consensus is achieved for a directed network of single-integrators or double-

integrators if and only if the graph contains a spanning tree. Further research has dealt with

cyclic graphs and cactus graphs (Refer to Glossary).
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3.2.2.2 Switching Topologies

Switching topologies refer to non-fixed topologies where edges may be added or removed from

the graph under varying circumstances, hence switching between elements of a finite set of

graphs, contrary to time-varying topologies where an infinite set of arbitrary graphs is consid-

ered. Average consensus can be asymptotically achieved for a network of single-integrators

with switching topologies taken from a finite collection of strongly connected and balanced di-

graphs. Research has further shown that consensus can be achieved if the union of the collection

of interaction graphs over some time has a spanning tree frequently enough.

3.2.2.3 Time-varying Topologies

Agents following the ’nearest neighbor rule’ interact with agents within a limited sensing ra-

dius, hence having an undirected graph topology. A discrete-time linearized network of such

autonomous agents achieves consensus if the joint connectivity condition is satisfies; i.e., there

exists an infinite sequence of continuous, non-empty and bounded time-intervals such that the

union of the collection of graphs across each time interval is connected. The network achieves

consensus regardless of switching as long as the graph remains connected. The problem of

flocking has been studied using variants of the joint connectivity condition. Convergence,

though not necessarily to consensus, can be achieved for cut-balanced time-varying topolo-

gies (Refer to Glossary). Time-variance of a network can also be caused due to active network

weight tuning for which adaptive strategies can guarantee stability.

3.2.2.4 Leader-Follower Topology

Leader following involves following a particular agent (‘leader’) in the group with directed

topology that does not have any incoming links. This is essential for distributed tracking con-

trol of MASs where the leader follows a reference trajectory. This problem has been solved

using neighbor-based state-estimation, variable structure approach, etc. considering measure-

ment noise, model uncertainties, delays and other non-ideal conditions. Consensus has been

developed for single- and double-integrator networks based on ‘pinning control’ where only a

small fraction of agents have access to the reference track. These agents act as leaders or are

pinned by other leaders. Choosing the best set of pinned nodes is a problem of active research.
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3.2.2.5 Preservation of Connectivity

A practical problem to deal with while satisfying different connectivity assumptions is how to

preserve network connectivity. This can be done by defining a potential field such that the con-

trol algorithm forces the system to move along the negative of the slope to preserve network

connectivity. This has been developed for centralized and distributed topologies, and has also

been studied in mobile robotic networks as a part of network integrity (Refer to Glossary). Con-

nectivity preservation is often studied with collision avoidance, where the control law combines

a repulsive potential for obstacle avoidance and an attractive potential for convergence.

Previous research has developed navigation functions for single robots and multi-agent systems

using potential fields for obstacle avoidance. Such navigation functions can work for stationary

obstacles alongside maintaining global network connectivity or achieving an objective such as

formation control or consensus. Externally applied boundary conditions can also be used to

preserve connectivity preservation: a group of agents in a bounded plane can be almost always

jointly connected and therefore form a complete flock.

3.2.3 Feedback and Communication

Feedback and communication mechanisms deal with modifications based on the measurement

function g and/or the measurement time vector τ(t,k) of the network influence, where x2(t,k) =

g(x1(τ(t,k),n(t,k)), t,k). Discretizing τ(t,k) represents sampled data control whereas discretiz-

ing g represents quantization. τ(t,k) can also be generalized to include communication delays.

3.2.3.1 Measurement Output Feedback Control

Very often, the actual state of an agent cannot be measured. Hence, measurement output feed-

back control is used usually with an observer design strategy. This problem has been solved

using leader-follower systems as well as more general undirected topologies. Cases where only

relative positions and not relative velocities are known to agents have been developed using

connectivity preserving algorithms on switching topologies as well as the containment control

problem (Refer to Glossary). Some research has also dealt with higher-order agents.
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3.2.3.2 Sampled and Quantized Control

Realistic multi-agent systems send data at discrete time instances. This has been studied for

fixed topologies and switching topologies, and necessary and sufficient conditions have been

provided for coordination on the interaction graph, the damping gain and the sampling period.

An allowable upper bound on the sampling period has been proposed for a network with ran-

dom switching topologies. Moreover, due to bandwidth constraints, data is quantized before

transmission. This has been studied for a quantized gossip algorithm, where at each time in-

stant, exactly one agent updates its state based on the information transmitted from only one of

its neighbors. Research has also been done on such systems for the average consensus problem.

3.2.3.3 Communication Delays

The exchange of information introduces delays between agents which, though usually ignored,

have to be considered to study convergence towards consensus for an actual network of agents.

Delays can predominantly be constant, time-varying, or distributed. Consensus in discrete-time

systems has been shown for systems with arbitrary upper bounds on the delay with the graphs

satisfying conditions such as being jointly rooted or the union over time having a spanning

tree. Similar studies have been performed for continuous-time networks with finite delays.

Identical integrators with heterogeneous delays converge to consensus against finite constant

delays. Conditions for heterogeneous agents have also been developed.

3.2.4 Collective Behaviors

3.2.4.1 Formation Control

Formation control involves a group of agents moving through space along a desired reference

trajectory while avoiding obstacles or other agents. A formation can be stabilized if and only

if the sensor digraph is globally reachable. Previous research on this field includes: spacecraft

formation control using leader following, behavioral approach, and virtual structure; formations

using a group of point mass robots; and cyclic pursuit by unicycle agents around a common

beacon with the same angular velocity and identical distances between neighboring agents.

Multi-agent rendezvous where all agents have to meet at one point has been achieved, and

formation shape control where agents achieve a desired shape and restore when perturbed. Here,

28



graph rigidity should be considered if agents can actively control inter-agent distances.

3.2.4.2 Scalability of Networks

Scalability of networks can be a requirement in both the time and the network dimensions. Most

research develops in the time dimension alone; however, the vehicle platoon (vehicle string)

problem deals with the network dimension, wherein a group of N vehicles is required to follow

a given reference trajectory while each one keeps a prescribed distance to neighboring vehicles.

Although easily solvable in the time dimension, the propagation of error through the string

(network dimension) results in a cumulative growth of error, referred to as ’string instability’

or ’slinky effect’. This can be prevented in both unidirectional (information propagation in one

direction) and bidirectional strings. Sufficient conditions have also proposed for scaling analysis

and design tools with the network size, referred to as the ’scalable robust stability criterion’.

3.3 Multi-Agent Formation Control

Formation control is applicable in scenarios where there are several agents which are required

to carry out a task in collaboration. Examples include GPS satellites which take positions

such that any point on the surface can link to multiple satellites, and mobile robots which can

together form a shape of interest. Oh et al. (2015) deal with formation control algorithms that

are segregated on the basis of the sensing capability and the interaction topology of agents.

The terms local and relative are extensively used in formation control literature and can be

described in terms of sensing capability and interaction topology as follows:

1. Relative is used to depict a variable when it is sensed with respect to a local coordinate

system. The contrary involves sensing with respect to a global coordinate system and is

termed as absolute.

2. Local is firstly used to depict an interaction topology where agents are not required to

interact with all other agents. It is also used with respect to the sensing capability with a

similar meaning as relative, hence implying the lack of a global coordinator.

Formation control can be generally divided into three major types: position-based, displacement-

based, and distance-based. More general approaches have also been developed for the problem.
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3.3.1 Position-based control

In a position-based control algorithm, all agents have global coordinates with respect to a global

coordinate system. Though position control can be performed for individual agents, interactions

among the agents may be beneficial. For example, given a first order control law, interactions

such that the graph has a spanning tree can include additional control inputs due to which the

absolute value of the eigenvalues of the error dynamics matrix increases.

Given the global agent coordinates p1, ..., pN ∈ R3, the objective is to move the agents from p j

to p∗j for all j in {1,2, ...,N} (desired global coordinate) while satisfying ||p j− pi||= ||p∗j− p∗i ||.

Disturbances and actuator limitations prevent agents from perfectly tracking the trajectories. In

such a scenario, the control system can use feedback coordination wherein agents are considered

to form a rigid body, or virtual structure. The required optimization problem and corresponding

desired trajectory can be solved by a global coordinator. Young et al. (2001) proposes a feedback

coordination scheme where a coordinator gather performance data from individual spacecrafts

and provides a coordination variable based on which the local coordinator gives a control input

to the spacecraft. This has been proposed for unicycles as well by Beard et al. (2001).

Apart from these approaches, a state-space method has also been developed, for which using the

absolute measurement (yi) gives position-based control whereas using the relative measurement

(zi) gives displacement-based control:


ẋi = Apxi +Bpui,

yi =Cpaxi,

zi = ∑ j∈Ni Cpr(xi− x j)

where i ∈ {1,2, ...,N, and xi, ui, yi and zi are the state, control input, absolute measurement, and

relative measurement of agent i.

3.3.2 Displacement-based control

In displacement-based control, the orientations of agents are considered with respect to a global

coordinate system. However, the origins for the agents are localized and different, and they

need not know the global origin. The interaction topology can vary as per requirement but has
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to be connected and contain a spanning tree since the displacement of neighbors needs to be

controlled. This form of control can be considered with numerous kinds of agents:

1. Single-integrator modeled agents: The control law is based on the single derivative of

the displacement: ṗi = ui∀i ∈ {1,2, ...,N}. Agents have individual local coordinate sys-

tems which are oriented with the global coordinate system. The displacement between the

agents is maintained using the control law: ui = −kp ∑ j∈Ni wi j

(
(pi− p j)− (p∗i − p∗j)

)
,

where wi j > 0 if an edge exists between agents i and j, wi j = 0 otherwise, and kp > 0.

2. Double-integrator modeled agents: The control law is based on the double derivative of

the displacement, and for pi, vi and ui being the displacement, the velocity and the control

input of agent i respectively, the system follows:

 ṗi = vi,

v̇i = ui

∀i = 1, ...,N

Relative velocities are controlled along with relative displacements (constants kp,kv > 0)

as: ui =−kp ∑ j∈Ni wi j

(
(pi− p j)− (p∗i − p∗j)

)
− kv ∑ j∈Ni wi j

(
(vi− v j)− (v∗i − v∗j)

)
.

3. General linear agents: The above cases can be generalized to a state-space model for N

agents which can be modeled using LTI systems over a graph G :

 ẋi = Axi +Bui,

y ji =C(x j− xi), j ∈Ni j

The system can provide a control input as: ui = KC ∑ j∈Ni j wi j(x j − xi) with the error

defined as ex := x∗−x. The desired formation is achieved if the graph contains a spanning

tree and A−λiKC is Hurwitz, where λi are non-zero eigenvalues of L.

4. Nonholonomic modeled agents: The case of unicycles on a plane is considered. Here,

the position ([xi,yi]
T ) and heading angle (θi) of each agent are known, and the control

inputs are the linear (vi) and angular velocities (ωi) of each agent. Some algorithms

achieve the desired formation with G being a spanning tree, while others require that G

be connected and (G ,δ ∗) is realizable (δ ∗ is the desired displacements for the formation).

When (G ,δ ∗) is not realizable, the agents may acquire a common velocity.
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The agents may be required to move to a particular absolute position. In such a case, it will

be required for some agents (number much smaller than total number of agents) to sense their

absolute positions. To solve such a control problem, the control law will include a term which

considers the error between the present and desired absolute positions. This can be extrapolated

to linear systems where the control law will include a term which considers the error for the

absolute state. This has been solved with a system where agents follow an acyclic directed

interaction graph, where agents with no neighbors are leaders and sense their absolute positions,

whereas others followers who compute their position based on the leader’s position.

Scaling the formation can be achieved in a similar manner whereby the leader is made aware

of a desired scaling factor λ ∗ which is subsequently sent to the followers or is estimated by the

followers based on relative positions of their neighbors.

3.3.3 Distance-based control

In distance-based control, agents have independently-oriented local coordinate systems and

their orientations are not dependent on other agents. If the interaction graph is not complete, the

agents are required to achieve the desired formation by controlling partial inter-agent distances,

and the interaction graph of the agents needs to be rigid or persistent. Rigidity is a measure

by which the interaction graph of N agents is related to the completely connected graph of

the N agents. An interaction graph is rigid if the inverse of the inverse of the edge function

gG (p) = 1
2 [...||p j− pi||2...] for the graph and its completely connected equivalent graph lie in

the neighborhood Up. The interaction graph is globally rigid if the twice inverses are equal.

Similar to displacement-based control, agents can be modeled as single-integrators or double-

integrators. The desired formation is described using the distances between the agents as Ep∗:

Ep∗ := {p ∈ RnN : ||p j− pi||= ||p j
∗− pi

∗||, i, j ∈ V }

where G = (V ,E ) and p∗ represents the desired distances between the agents. This problem

has been solved by using gradient descent on the local potential function for each agent as

φi(pi
i, ..., pi

j, ...) := kp
2 ∑ j∈Ni γi j

(
||pi

j− pi
i||
)
, where kp > 0 and γi j : R→ R̄+ is a differentiable

function defining individual potentials. Though calculated for each agent individually, it is

convenient to consider the agents in a global coordinate system for which a global potential

32



function is calculated and minimized using a globally computed gradient descent law.

The single-integrator model can have the control law ṗ = u =−∇φ(p). The desired formation

is not globally asymptotically stable with respect to this system due to discrepancies at certain

situations. This includes the case where all control inputs are zero or not defined since all the

agents are at a common point, and the case where agents cannot escape from the line when they

are all collinear. However, it has been shown that the control law allows agents to asymptotically

approach desired 2D (triangular, equilateral triangular, etc.) and 3D formations.

Distance-based control of double-integrator modeled agents is done similar to displacement-

based control. Here, the desired formation is given as:

Ep∗,v∗ := {[pT vT ]T ∈ R2nN : ||p j− pi||= ||p j
∗− pi

∗,v = 0||, i, j ∈ V }

which requires speed to be zero along with the desired formation for the single-integrator model.

In contrast to the rigidity of an undirected interaction graph, a directed graph needs to be per-

sistent for stability. Define p to be the positions assigned to the nodes. The position pi ∈ Rn is

said to be fitting for the desired squared distances d∗i j if there is no p′i ∈ Rn such that

{æ ∈Ni : ||pi− p j||2 = d∗i j} ⊂ {æ ∈Ni : ||p′i− p j||2 = d∗i j}

. Persistence is equivalent to rigidity along with a reasonable distribution of responsibility for

the agents to control the inter-agent distances; i.e. a framework (G , p) is persistent if there

exist a neighborhood of p such that every realization q fitting to p is congruent to p in the

neighborhood. A minimally persistent framework is defined as a persistent framework whose

persistence is lost on removing any edge. Distance-based control laws that assume persistence

have to maintain stable rigidity by which the directed formation graph is acyclic and the under-

lying undirected graph is minimally rigid.
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Figure 3.1: Minimally Persistent Formations (Oh et al. (2015))

Minimally persistent formations are either leader-first-follower (LFF), leader-remote-follower

(LRF) or co-leader (depicted in Fig. 3.1). Studies on triangular LFF and co-leader formations

have shown that the agents can exponentially converge to the desired formation as long as

the initial positions of the three agents are not collinear. Followers can maintain the desired

formation when the leader is traversing slowly along the reference trajectory. However, unless

the leader is stationary, the formation will be erroneous. To prevent this, followers may move

according to an estimated position of the leader.

3.3.4 Other approaches and correction techniques

Since several collective behaviors are based on relatively simple interactions between individu-

als, a generic agent model can be developed such that it satisfies Reynolds’ rules, given as:

1. Cohesion: stay close to nearby neighbors

2. Separation: avoid collisions with nearby neighbors

3. Alignment: match velocity with nearby neighbors

Several control laws have been developed following this model that study the single-integrator

and double-integrator modeled agents on planes and n-dimensional space.

The measurements taken for positions, displacements or distances need not be exact due to

erroneous sensor readings. This can be solved by estimating the actual value pi as p̂i. This

estimate gives us an error of p̃i = pi− p̂i. For single-integrated models following position-

based control, p̂i asymptotically converges to pi up to translation if G is uniformly connected.

A formation shape control scheme can be developed where purely distance-based control is
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performed; i.e. only inter-agent distances are considered for computing relative positions of

neighbors. This scheme repeatedly divides the agents in (at most four) subgroups and reduces

the local potential functions one subgroup at a time. Globally asymptotic stability to a desired

formation has been achieved using angle-based control as well, where the desired formation is

represented in terms of angles α∗ = [α∗1 α∗2 α∗3 ...]T .

Containment control problems consist of follower agents which are driven into the convex hull

spanned by leader agents based on consensus, and is effective is avoiding expensive sensors.

On the other hand, cyclic pursuit problems consist of agents that follow their next agents (agent

i follows agent (i+1)%N), such that equilibrium formation is a generalized regular polygon.

3.4 A Planar Three-Coleader Formation Control problem

Previous research has dealt with formation control based on inter-agent distance preservation.

Anderson et al. (2007) consider controlling the distance between two agents in a directed man-

ner, by assigning it to only one of the two agents. This is trivial if the directed graph hence

developed is acyclic since followers are influenced by leaders but not the other way. Consider-

ing cyclic structures for distance-based control cause more complicated problems than acyclic

ones; however, balanced directed graphs can effectively solve the control problem. This paper

considers the simplest two-dimensional formation with a simple balanced graph.

3.4.1 The Problem

The problem involves three holonomic massless point agents each with one degree of freedom,

placed initially at incorrect distances from each other. Agent i knows the current distance (ri),

the required distance (di) and the direction of the next agent i+1. It is assumed that:

• the triangular inequality di +d j > dk holds for i 6= j 6= k, and

• no two agents coincide in their position.

These two assumptions cause angles αi to be well-defined throughout the motion even when

the agents are collinear. The entire system can be visualized as follows:

35



Figure 3.2: Three-Coleader Formation (Anderson et al. (2007))

3.4.2 The Solution

The control law initially aims to converge the present distances to the required distances and

defines the speed of agent i as si =−(di− ri). This gives the speeds in individual coordinates as

ẋi = sisin(φi) and ẏi = sicos(φi), and the angles as αi = cos−1
(

r2
i−1+r2

i −r2
i+1

2ri−1ri

)
. However, since

the motion of agent i towards or away from agent i+1 changes the its direction with respect to

agent i−1, the system also requires a control law to govern the angle between agents.

From the figure, we observe that φi = φi−1 + (±π − αi) such that ∑α = π . Based on the

initial control law, the existence of a solution and asymptotic stability can be proven from error

dynamics based on the error variables ei = ri−di. The solutions are well-defined as long as no

ri is zero throughout the solution trajectory. The error dynamics can be calculated as:


ė1

ė2

ė3

=


−1 −cos(α2) 0

0 −1 −cos(α3)

−cos(α1) 0 −1




e1

e2

e3


This gives us four equilibrium points: [0,0,0]T , k1[−1,−1,1]T , k2[1,−1,−1]T and k3[−1,1,−1]T ,

where k1 = (d1+d2−d3)/3, k2 = (−d1+d2+d3)/3 and k3 = (d1−d2+d3)/3, of which none

give ri = 0; i.e. ei =−di, as long as the first assumption of triangular inequality holds true. This

gives us three invariant motions of the system trajectory where the three agents are collinear.

Based on the dynamics and the previously proposed control law, we obtain a relation that gives
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the corresponding control law for angular motion: φ̇1 = r−1
1 (r2− d2)sin(α2), by which ri will

converge exponentially to di. Hence, although the differential equation for φi is not asymptoti-

cally stable, the variable will converge to zero since it depends on di−ri which decays exponen-

tially to zero. Due to this exponential stability, the error ei will converge to some neighborhood

of zero in the presence of noise or bias. However, the formation may end up rotating or trans-

lating with a constant velocity. To prevent this, an external input determining the requirement

to move or rotate can be supplied to the system. Also, deadzones can be introduced that will

prevent this issue for larger error or bias although the error may not converge exactly to zero.
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Chapter 4

Practical Applications of Decentralized

Formation

4.1 A Multi-Agent Coordination problem using Distributed

Pattern Matching

Sakurama et al. (2019) develop upon a problem of multi-agent distributed formation control

where the agents aim to achieve a final shape, possibly after rotation by R(t) and translation by

τ(t), hence giving the control objective: limt→∞(xi(t)− (R(t)x∗i + τ(t))) = 0 where xi(t) ∈ Rd

is the current position of agent i ∈ {1,2, ...,n} in the global frame and x∗i(t) ∈Rd is its position

in a desired formation. This can be solved using attitude synchronization at the cost of exchang-

ing information about Ri(t) and τi(t), and using a distance-based formation control using only

relative positions and local bearings at the cost of solving for equally possible but unexpected

formations (such as the reflection of a point through another).

To avoid these drawbacks, the problem can be directly solved by considering the control objec-

tive as an optimization problem, and solving for R(t) and τ(t) to best match x∗i to xi(t). For-
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mation control is performed using relative positions and local bearings via distributed pattern

matching executed over each clique of networks in order to achieve the best control perfor-

mance in attaining the desired configuration. The concept of clique rigidity gives a necessary

and sufficient condition for the network being capable of achieving the configuration.

4.1.1 The Problem

A group of n mobile agents is considered in a d-dimensional space, indexed by V = 1,2, ...,n.

Transfer of information can happen between two agents i and j only if they are neighbors on

the graph G = (V ,E ); i.e., there exists an edge between them. Agent positions are defined by a

fixed and common global frame Σ, and a time-varying local frame Σi(t) that is translated and ro-

tated from Σ by xi(t) and Ri respectively. The dynamics of agent i is given as ẋi(t) =Riui(t) for a

control input ui(t) ∈Rd . Agent i can measure the relative position of a neighbor j ∈Ni in Σi(t)

as x[i]j (t) = RT
i (x j(t)− xi(t)) and the control input is computed as ui(t) = fi

([
x[i]j (t)

]
j∈Ni

)
The control law aims to converge the distances between the actual positions and the desired

positions of agents to zero: limt→∞ dist(X(t),TX∗) = 0 where TX∗ = {X ∈ Rd×n : ∃(R,τ) ∈

SE(d) s.t. X =RX∗+τ1T
n } is the target set of the collective position X(t)= [x1(t),x2(t), ...,xn(t)],

and X∗ = [x∗1,x∗2, ...,x∗n] is the collective desired position.

A gradient flow approach can be used by which a function v (with minimum value zero) evalu-

ates the achievement of a given task. From ẋi(t) =− ∂v
∂xi

(X(t)), we observe that v(X(t)) should

be monotonically non-increasing, and that X(t) locally converges to the zero set v−1(0). Also,

ui(t) = −RT
i

∂v
∂xi

(X(t)). Hence, we need to find v(X) with v−1(0) = TX∗ (v(X) becomes an

indicator to TX∗) to detect whether the desired formation has been achieved. Here, v(X) ∈

Fr ∩Fd(G)∩F0(X∗) for a sufficient quantity of edges of graph G, where Fr(G) and Fd(G)

are the set of all continuous functions having relative gradients and distributed gradients over

G respectively. We need to minimize the Hausdorff distance (Refer to Glossary) between v(X)

and TX∗ to find the best approximate indicator (BAI); i.e. min[H-dist(v(X)− (TX∗)].
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4.1.2 The Solution

The multi-agent coordination problem can be solved using the concept of pattern matching. A

rigid body in a d-dimensional space is represented by a sequence of m points in R: y1, y2, ..., ym

in Σy, and z1, z2, ..., zm in Σz, such that yi =Rzi+τ with rotation matrix R∈ SO(d) and translation

vector τ ∈Rd . Pattern matching can be used to minimize the total sum of the square errors; i.e.,

min(R,τ)∈SE(d)||Y −(RZ+τ1T
m)||2 where Y = [y1 y2 ... ym]∈Rd×m and Z = [z1 z2 ... zm]∈Rd×m.

Consider the singular value decomposition (SVD): (Z− ave(Z)1T
m)(Y − ave(Y )1T

m)
T = USV T

with orthogonal matrices U,V ∈ Rd×d and diagonal matrix S = diag(σ1 σ2 ... σm) (σi are the

singular values). The solution for the minimization problem is R =V diag(1, ...,1,det(UV ))UT

and τ = ave(Y −RZ). If a unique solution is not obtained for U and V , a set-valued function

Rm is considered such that all R ∈Rm satisfy the above relation.

The function v(X) has a distributed gradient (Refer to Glossary) only if it can be decomposed

as a sum of continuous and differentiable functions with each function dependent on [x j] j∈C for

each clique C ∈M− clq(G). For graph G and the target set TX∗ ⊂ Rd×n, a BAI to TX∗ is given

as:

v(X) = ∑
C∈M−clq(G)

αC

2
[
dist([x j] j∈C ,PC (TX∗))

]2

where αC > 0, and PC (TX∗) is the projection of TX∗ onto the [x j] j∈C space; i.e., PC (TX∗) =

{Y ∈ Rd×|C | : ∃(R,τ) ∈ SE(d) s.t. Y = R[x∗ j] j∈C + τ1|C T |}. This reduces to the optimization

problem of minimizing the total sum of the square errors and can be solved using pattern match-

ing. The gradient-based control input with v(X) is obtained as:

ui(t) = ∑
C∈M-clqi(G)

αC

[
ave
(
[x[i]j (t)] j∈C

)
+RC (t)

(
x∗i− ave([x∗ j(t)] j∈C )

)]
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4.2 Decentralized Spacecraft Formation Flying using a Vir-

tual Structure

Ren and Beard (2004) compare three forms of formation control. First of all, the leader-follower

approach has been adopted in previous research where leaders follow predefined paths and fol-

lowers track the states of neighbors based on this motion. This is simple and easy to implement,

however it can cause issues due to the leader being a single point of failure and the formation

not being maintained when followers are perturbed in the absence of formation feedback. Sec-

ondly, the behavioral approach considers a control algorithm based on the weighted average of

the control for the desired behaviors of the agent. Being a decentralized implementation, this

is a robust and reliable mechanism. However, it is difficult to mathematically analyze such a

system and it is not capable of maintaining the formation during maneuvers. Thirdly, the virtual

structure approach considers the entire formation as a single body. This satisfies the conditions

of the problem statement in the paper that: the framework should be decentralized since it in-

volves a large number of agents, formation feedback should be used to improve robustness,

the formation should be easily maneuverable, and the framework should be maintained with

high precision during maneuvers. Previous research has dealt with a centralized architecture

using the virtual structure approach. Here, a discrete event supervisor G provides the current

formation pattern to a formation control module F. F produces and broadcasts the coordination

vector ξ which is converted by a local controller Ki to the desired state for the local spacecraft

Si. Si finally converts this state to the control input ui. Since G and F is centralized at the first

spacecraft, heavy communications load can deteriorate the overall performance of the system.

Moreover, the centralized node can act as a single point of failure for the whole system.

Decentralized control has also been previously research wherein a bidirectional ring topology

is used for communication of state information. The robots are moved to their final destina-

tions while maintaining the formation during transition. Other research have also dealt with

maintaining zero attitude error and rotating the spacecraft about a defined axis of rotation.
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4.2.1 The Problem

The paper presents a decentralized approach where the formation designs the coordination vec-

tor such that agents are connected in a bidirectional ring topology. Contrary to the centralized

approach, each agent has a local copy of the discrete event supervisor as Gi and of the formation

controller as Fi alongside Ki and Si. The state ξi is computed based on ξi−1 and ξi+1. This is

shown in Fig. 4.1. Formation feedback can also be included from other agents at the cost of

additional computation.

Figure 4.1: Decentralized Formation using Virtual Structure Approach (Ren and Beard (2004))

4.2.2 The Solution

Control laws are proposed, first for the spacecraft to follow the desired states prescribed by the

virtual structure, and then for each virtual structure instantiation to synchronize to achieve the

desired formation pattern. Finally the solution provides a convergence analysis for the system

with the coupled dynamics of N spacecrafts with N coordination vector instantiations.

Firstly, the actual physical state of the spacecraft is defined as Xi = [rT
i ,vT

i ,qT
i ,ω

T
i ], the de-

sired state as Xd
i and the error state as X̃i = Xi−Xd

i . The proposed control force and torque

is developed from the state and its derivative. A control law is further proposed for the ith
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coordination vector instantiation ξi. The current desired constant goal is given as ξd(k), simpli-

fied as ξd , and the error state is given as ξ̃i = ξi− ξd(k). The control law uses behavior-based

strategies to evolve the instantiation to the desired goal (ξd) as well as synchronize each instan-

tiation (ξ1 = ξ2 = ... = ξN). Two errors are defined: EG as the goal-seeking error represented

by the total error between ξi and ξd , and ES as the synchronization error represented by the total

synchronization error between neighboring instantiations. The control objective is to asymptot-

ically drive the total error E(t) = EG(t)+ES(t) to zero.

To incorporate formation feedback into the system, ΓGi = DG +KFeTi is defined where DG

and KF are symmetric positive definite matrices and eTi = ||X̃i||2 represents the tracking perfor-

mance for the ith spacecraft. The proposed control force and control torque are given as:

fFi = mF
(
−KG(rFi−rd

F)−ΓGivFi−KS(rFi−rF(i+1)+rFi−rF(i+1))−DS(rFi−rF(i+1)+rFi−rF(i−1))
)

τFi =−kGq̂
d∗
F qFi−ΓGiωFi− kS( ̂q∗F(i+1)qFi + ̂q∗F(i−1)qFi)−DS(ωFi−ωF(i+1)+ωFi−ωF(i−1))

where KG is a symmetric positive definite matrix, KS and DS are symmetric positive semi-

definite matrices, kG,kS > 0 are scalars, and q̂ represents the vector part of quaternion q.

The formation may expand or contract along each FF axis with the vector λF = [λ1,λ2,λ3]. A

control law similar to that for force and torque can be developed for the virtual control effort

νFi = λ̈Fi as well. The first two terms in the equations for fFi, τFi and νFi drive EG→ 0, and

the others synchronize neighboring coordination vector instantiations. Moreover, the second

terms (formation feedback term) slow down the implementation when tracking error is large.

For the control laws for the spacecrafts and the coordination vector instantiations, ∑
N
i=1 eTi +

E(t)→ 0 asymptotically. This can be proven using the stability of a suitable Lyapunov function,

followed by application of lemmas described in the paper and LaSalle’s invariance principle.

This theorem proves that the formation maneuver is achieved asymptotically.

4.3 Robotic Assembly of a Modular Space Telescope

She and Li (2020) investigate and solve the problem of assembling a large space telescope in

orbit. The solution utilizes space robots to join parts of the telescope rather than each part per-
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forming self-assembly using formation control. The paper deals with two sub-problems, the first

being the mapping between the assembly path and the assembled piece number, and the second

being a two-level hybrid optimization algorithm inspired from previously used algorithms.

4.3.1 The Problem

Constructing a structure in space can be done using two broad schemes: the first involves hu-

man involvement in the assembly (eg: International Space Station), and the second involves

autonomous in-orbit assembly. Autonomous assembly can further be sub-divided as assembly

using a servicing platform and space manipulators, and assembly by formation flying and dock-

ing maneuver. The former method is considered since the latter involves drawbacks such as

high collision risk, large fuel consumption and high requirement for a GNC system.

The problem involves the construction of a 60-meter parabolic space telescopic mirror using

274 hexagonal pieces and six working regions (R1 to R6). Previous research has dealt with

similar problems with single robots for mission planning and feasibility analysis. However,

since the required structure is reasonably large, mission assignment, planning and scheduling

are dealt with for multiple robots. More constraints arise from the fragility of telescope mirrors.

Odd (and even) regions are identical and symmetric about the z-axis, with 49 (44 for even)

pieces assigned to each region. The telescope’s parabolic surface is described by z(i) = a ·

(
√

x(i)+ y(i))γ where a and γ are positive constant coefficients. The problem involves de-

veloping an optimization algorithm to minimize the time for assembly and hence the distance

traveled by each robot. The assembly paths are considered to be symmetric, with all odd assem-

bly paths being rotated copies of the first and similarly so for even assembly paths. Moreover,

the problem assumes that the base requires connection to the telescope structure and that its

dynamic effect is negligible due to the huge mass of the structure.

4.3.2 The Solution

The optimization problem imposes specific conditions: an already assembled piece should not

be revisited to minimize the risk of damage to the reflector, and all pieces should be assembled

by the final time-step in the algorithm. This problem can be solved using existing solvers such
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as the Genetic Algorithm (Refer to Glossary), and due to symmetry, the optimization problem

needs to be solved only for R1 and R2, beyond which the same solution is adopted for all

manipulators.

The work space of a manipulator is the area that can be reached by its end-effector. More

realistically, the work space of the base located at a particular piece is defined as the the pieces

connected to that piece. If a piece is within the work space of the manipulator, it is assumed

that it can be properly assembled. To avoid collision between different bases, the algorithm

intends to maximize the distance between any two bases with a buffer length. This lightens

the load of complex collision avoidance constraints on mission planning and control system.

Moreover, since the time taken for installation of a piece may vary due to several conditions,

this is incorporated into the algorithm as a time delay. This addition is precarious since a large

time delay implies a very slow solution whereas a small time delay may cause manipulators to

not finish each installation operation on time. The optimization problem can be written as:

minN, M

(
a1 ·∑

i
Ll(i)+a2 ·∑

i
Lr(i)−g

(∥∥ri− r j
∥∥−2L

))

where N = [N1,N2,N3] and M = [M1,M2,M3] represent the left and right assembly sequence

vectors respectively. Here, the symmetry of assembly has been removed. A robot can stay in

the same position while other robots assemble and Tdelay_max denotes the maximum acceptable

delay period. g
(∥∥ri− r j

∥∥−2L
)
= ∑n min

(∥∥ri(n)− r j(n)
∥∥−2L

)
,∀ri,r j is the cost function

representing the sum of the minimum relative distances between manipulators at each time

step. This optimization problem can be solved using existing algorithms but with low efficiency

and high computational cost.

To efficiently solve the optimization problem, a hybrid algorithm, the Continuous Path Gener-

ation Algorithm (CPGA) is mapped to the path with work space coverage. For a manipulator

located at r, the surrounding pieces (in work space W(r)) are recognized by the CPGA and

stored from which the rest of the path generation operation is determined. The algorithm stops

when all pieces within the working region are installed. It is observed that the mapping is injec-

tive; i.e. different CPGAs will generate different paths considering the work space coverage.
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Figure 4.2: Two-level optimization algorithm (She and Li (2020))

Based on the optimization model developed so far, the entire process can be separated into

two phases: the first involves path optimization to find the minimum path length using an ant

colony-inspired algorithm, and the second is the scheduling of the manipulators considering the

delay time and maximizing inter-robotic distance. Given in Fig. 4.2 is a diagram denoting the

two-level algorithm adopted for optimization.

4.4 Spacecraft Assembly based on Potential Field

Chen et al. (2017) deal with a particular case of formation control where agents require close
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proximity and contact using which they assemble to form a larger object. On-orbit assembly

has been previously exhibited by the construction of space stations such as Mir and ISS. The

motivation of the paper lies in the fact that no previous research has studied on-orbit collision-

free assembly of multiple flexible spacecraft using a potential field based control. A form of

assembly is developed where agents assemble themselves without utilizing ‘assembler robots’.

4.4.1 The Problem

The problem considers multiple spacecrafts (four in the paper) with flexible arms in opposite

directions and a hub in the center (hub-beam mechanism). The dynamic equation are given as:

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +gi(qi) = τi

where i represents the agent index, Mi and Ci are the mass matrix and the damping matrix

respectively, gi(qi) =
∂V
∂qi

is the elastic force vector due to potential energy V , qi = [Xi pi]
T =

[Xo Yo θ pA1 pB1]
T is the generalized coordinate vector, and τi = [τT

i1 0T ] = [Fx Fy T0 0 0]T is the

generalized external force vector, composed of the forces acting on the spacecraft’s center and

the moment acting on the spacecraft. The only observable states are Xi and Ẋi, and since only

the rigid hub is controllable, the flexible spacecraft is an underactuated system.

Communication between the agents is done as per an undirected ring graph, whereby an agent

can communicate with its neighboring two agents. Also, given arbitrary position, orientation

and deformation of appendages, the agents are expected to form a pre-assembly configuration

and then move into an assembly configuration as shown in Fig. 4.3. The central region in

between the flexible spacecrafts in the pre-assembly configuration is further considered as a

virtual leader which is followed by each agent.

Figure 4.3: Configuration Transformations (Chen et al. (2017))
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4.4.2 The Solution

An artificial potential field can be introduced that needs to be minimized to achieve the final

configuration. Each spacecraft is considered to lie inside an ellipse whose center coincides

with the center of the rigid hub, and whose major axis and minor axis lengths are R+L and R

respectively. The potential field can be divided into the following parts:

• The virtual leader is considered to be at the point of average coordinates of the agents

from their initial configuration with a safety radius of δ . For each agent to move closer to

the virtual agent, a potential field is defined as: V1 = ∑
4
i=1 β1d2

i0, where di0 is the distance

between the ellipse of agent i and the virtual leader circle

• In order to enforce an orientation angle difference of π

2 between each neighboring agent,

a potential field is provided as: V2 = β2 ∑
3
i=1 cos2(θi+1−θi)

• Each rigid hub is expected to be as far away as possible from the virtual hub while satis-

fying Vi1 = 0 in order to create a configuration as shown in Fig. 4.3. Hence, the centers

of the virtual leader and the rigid hub should be at a distance of R+L+δ , and a potential

field is defined as: V3 = ∑
4
i=1 β3

[√
(X0i−XL)2 +(Y0i−Y 2

L )− (R+L+δ )

]2

The total potential energy of the assembly mission is given as VA =V1 +V2 +V3 where V1 ≥ 0,

V2 ≥ 0, V3 ≥ 0 and hence VA ≥ 0 are always true. However, in order to avoid local min-

ima, V1 is rewritten as V ∗1 = ∑
4
i=1 β1 [(X0i−XL)sinθi− (Y0i−YL)cosθi]

2, giving V ∗A = V ∗1 +

V2 +V3. Furthermore, to avoid inter-spacecraft collision, a fourth potential is develop as V4 =

∑
4
i=1 ∑ j∈Ni Vi j = ∑

4
i=1 ∑ j∈Ni β4

[
coth

(
di j−γ

Ki j

)
−1
]

4.5 Spacecraft Assembly based on Disturbance Observer

Chen and Wen (2018) deal with the assembly of large space structures where each module can

control its own motion to gain the desired states. Previous research has conducted this study for

rigid spacecrafts. Here, the problem is proposed for flexible spacecrafts.
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4.5.1 The Problem

Assembly of rigid spacecraft has been studied in previous research. However, this is not capa-

ble of considering the effect of appendages such as solar panels, antennas and manipulators. A

control law can be designed with a disturbance observer for the assembly of multiple flexible

spacecraft into a large structure. Two topologies are used for the system: G1 for basic infor-

mation communication and G2 for collision avoidance. The former utilizes a graph such that a

given node receives information of nodes with adjacent numbers, and hence is a constant graph.

On the other hand, the latter utilizes a graph such that an edge is formed between two nodes if

the distance between them is less than a constant value α , and hence is time-variant.

The spacecrafts form a pre-assembly configuration following which they move closer to assem-

ble. The latter step is very easy and only an assembly controller is required. Pre-assembly incor-

porates a compound controller consisting of the assembly controller and a collision avoidance

controller. The spacecraft is controlled by manipulating the rigid hub which is the only observ-

able part of each spacecraft. Each spacecraft consists of a rigid hub and two flexible appendages

(A, B), and is treated as an Euler-Bernoulli beam (Refer to Glossary). The generalized coordi-

nate vector for spacecraft i can hence be written as qi = [X0i Y0i θi pA1i pA2i pA3i pB1i pB2i pB3i],

where xi = (X0i Y0i θi) gives the coordinates of the rigid hub of spacecraft i, and pi = [pAki] and

p jki gives the k-th modal component of appendage j of spacecraft i. This gives the dynamic

equation in matrix form as:

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +Cdiq̇i +Ki(qi)qi = Giτix

where Mi is the mass matrix, Ciq̇i is the summation of the centrifugal and the Coriolis torque/force,

Cdiq̇i is the structural damping force, Ki is the stiffness matrix, Gi = [I3 03×6]
T , and τi is the

control input vector.

4.5.2 The Solution

The paper presents a disturbance observer which approximates to the value of the disturbance

forces. Since the rigid hub is the only part of the spacecraft which can be manipulated, the
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vibrations caused on the appendages are considered as disturbances. The disturbance observer

incorporates the state vector (zi) and a non-linear function (f(ẋi)) of the derivative of the coor-

dinates of the rigid hub. Provided that g(ẋi) =
∂ f(ẋi)

∂ ẋi
= diag([λ1(ẋi1) λ2(ẋi2) λ3(ẋi3)]) where λi

is a positive function of xi for all i, the disturbance estimation errors gradually converge to zero.

The paper defines an auxiliary variable x̄ = x−∆, where ∆ is a constant offset vector defined

by the final configuration of interest. The assembly controller aims to equate this variable for

every agent; i.e. x̄1 = x̄2 = ...= x̄N . A control law without collision avoidance can be developed

for this purpose and the fleet of flexible spacecraft can be driven to the required pre-assembly

configuration with a gradual suppression of the appendage vibrations using this control law.

When the agents are very close to each other, collision avoidance is achieved by introducing

a repulsive potential field defined as: Vca = ∑
N
i=1 ∑ j∈N2i Vca,i j where N2i represents the set of

neighbors of node i in the collision avoidance graph G2 and

Vca,i j =

 (Di j−α)2, if Di j ≤ α,

0, otherwise

where Di j is the radial Euclidean distance between the ellipses formed by agents i and j. The

collision avoidance force is given as Fca = −∇xVca which is added to the control input force

τx. This force is included in the control law in order to bring the agents to the pre-assembly

configuration. However, it is not used to achieve the assembly configuration since an input of

very small distances to the collision avoidance potential may cause adverse results.
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Chapter 5

Recent Developments in Spacecraft

Attitude Control

5.1 A Consideration of Thrust Uncertainty

Golpashin et al. (2020) deal with modeling and mitigating disturbances caused by a spacecraft

itself, specifically thrust-induced disturbances of continuous low-thrust spacecraft attitude ma-

neuvers. These disturbances are modeled as a multiplicative Gaussian white noise process along

with the existing noise in thrust, and a stochastic optimal controller is designed to obtain the

behavior based on the best-known information on the severity of the disturbance.

Spacecraft attitude dynamics can be modeled as stochastic differential equations (Refer to Glos-

sary) with the control law based on the multiplicative nature of increasing the magnitude of

thrust on the propagated thrust uncertainty. All initial conditions and state variables are known

ahead of time and a Hamilton-Jacobi-Bellman (HJB) equation is formulated to give a solution

approximated by a power series. The solution is local in nature and suboptimal away from the

origin, but in the operational space, the control is approximately optimal.

There are three methods adopted in previous research to formulate attitude dynamics. The first
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uses a cascade structure, the second uses a Hamiltonian formulation to represent dynamic and

kinematic equations as a second-order differential equation, and the third adjoins the kinematic

and dynamic equations by extending the state vector of the kinematic parameters and the body

rotational axes. Here, the third approach is adopted to approximate the HJB equation; hence,

the closed-loop nonlinear equation is stable in the neighborhood of the origin.

5.1.1 The Problem

The system is represented using the dynamic equations Iω̇ = S(ω)Iω where S(ω) is the cross

product matrix of ω , I ∈ R3×3 is the principal moment of the inertia matrix, ω ∈ R3×1 is the

angular velocity vector about the body principal axes, and M is the total applied torque vector.

The Tsiotras-Longuski parameterization (Refer to Glossary) is used to describe orientation since

it involves only three parameters for a system of three degrees of freedom. Also it contributes

to a linear component in the system, hence permitting the system to be linearized at the defined

state’s origin. Moreover, the structure of the involved differential equations allows a ‘degree-

by-degree approximation’ of the system to the origin, starting from linear control. Finally, in

contrast to Euler angle parameterization, the singularity is at a more desired position.

A single thruster fired with a force F = [cos(α)sin(β ) sin(α)sin(β ) cos(β )]T F́ oriented with

azimuth angle α and elevation angle β and located at r = r1e1 + r2e2 + r3e3 from the center of

gravity of the spacecraft gives a thrust to the spacecraft as τ = r×F = bF́ . The spacecraft

can have multiple bidirectional thruster pairs generically indexed as i, and the thrusters in a pair

are symmetric to each other (ri1 = −ri2 = ri) though the forces Fi1 and Fi2 may be different.

The total thrust due to such a pair is: τi = ri1×Fi1 + ri2×Fi2 = ri× ||Fi1||+||Fi2||
||Fi1|| ·Fi1 = ri1×Fi,

where Fi gives the equivalent net force resulting in the generalized torque due to the ith thruster

pair. The torques of m such pairs can be accumulated to give the total exerted torque τ =

bUNF(t), where UNF(t) is the total noise-free control vector and each column bi (assume time-

invariant) of b : R3→ Rm represents the axes about which ||bi||UNF,i(t) is applied. Substituting

the generalized moment as bUNF(t), the system dynamic equations can be reformulated as:

Iω̇ = S(ω)Iω +bUNF(t)
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The thrust uncertainty of the ith thruster can be given as an independent Gaussian white noise

process ηti from which the uncertainty due to the thruster pair can be modeled as a Gaussian

white noise process ξt = ηt1 +ηt2. The noisy control input is Ui(t) =UNF,i(t)(1+ξti) and the

total control input U(t) is the sum of all Ui(t). Unlike additive noise, the multiplicative uncer-

tainty structure lets the magnitude of noise generated by the to be dependent on the magnitude

of the control input itself. On solving the dynamics equation with the control input model

and replacing the noise component with the diffusion coefficient σ(.) and the m-dimensional

standard Brownian motion Wt (Refer to Glossary) on the probability space (Ω,F ,P), we get:

ωt = ω0 +
∫ t

t0
[I−1S(ωs)Iωs + I−1bu(s)]ds+

∫ t

t0
σ(u(s))dWt

The state vector is defined as x = [ω1 ω2 ω3 w1 w2 z]T and, on differentiating, gives the equation

of the complete system with suitable coefficients as:

dx = [Ax+ f (2)(x)+ f (3)(x)+Bu(t)]dt +σ(u(t))dWt

where the superscripts in parenthesis represent the order of the terms in the state. The diagonal

nature of the control input matrix allows each entry of the Wiener process to be solely associated

with the corresponding input ui(t).

5.1.2 The Solution

The control algorithm involves the minimization of a cost function J (u)=Ex0,t0

[∫
∞

t0 r(x,u)dt
]
,

where we have an infinite time horizon, t0 ≥ 0 is the initial time and x0 the previously deter-

mined initial state. The value function (minimum cost) V (x) is the solution to the HJB equation

associated with the stochastic differential equation that describes the complete system:

minu[L
uV (x)+ r(x,u)] = 0

where L uV (x) is a function of the single and double partial derivatives of V (x). Given V (x)

and corresponding u(x), the control u = u(x) is optimal and will minimize the functional in in-
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finite time if V (x) satisfies the asymptotic stability conditions of Lyapunov’s second method for

SDEs, V (x) satisfies L uV (x) =−r(x,u) given the closed-loop system, and a particular Hamil-

tonian 1 is strictly convex in κ and attains its minimum when κ = u. Given these conditions,

we aim at finding approximations for the solution to the HJB equation as a truncated series.

Supposing u(k) and V (k) to be the optimal solutions, they are approximated as power series

substituted in the HJB equation to give the Hamiltonian, which is further differentiated to give

a control equation. A particular matrix K can be developed such that the linear control Kx

asymptotically stabilizes the linear dynamics of the system in probability, and is optimal with

respect to the quadratic Hamiltonian based on the satisfaction of two conditions. Considering

two specific linear operators L1 = ((A+BK)x)T ∂

∂x and L2 = 1
2ε2(BKx)(BKx)T H, non-linear

stochastic control k(m)(x) for m > 2 can also be developed, provided the asymptotic stability

of the linear deterministic part of dynamics and that the minimum eigenvalue of L1 acting on

V (m)(x) is greater than the maximum eigenvalue of L2.

The general SDE dxt = f (t,xt)dt +σ(t,xt)dWt , t ≥ 0 representing the system linear dynam-

ics for any drift function f (t,xt) ∈ Rn shows asymptotic stability in probability, provided a

particular time-dependent ‘counterpart’ of the infinitesimal generator L satisfies LV (t,x) <

−CV (t,x); i.e. LV (t,x) is negative definite, for an arbitrary constant C > 0 and positive def-

inite function V (t,x) : [t0,∞)→X = {x : |x| < h,h > 0}, that is twice differentiable in x and

differentiable in t. Up to sextic non-linear control can be solved with each order of control

containing unknowns from the Hamiltonians of the next order; in order to solve the system for

six terms, the value function needs to be known until n = 7.

5.2 Attitude Consensus based on Distributed Observers

Distributed attitude consensus of multiple cooperative spacecrafts can be classified as two types:

leaderless consensus where spacecrafts reach an a priori unknown state, and leader-following

consensus where each follower tracks a prescribed trajectory provided by a real or virtual leader.

Gui and de Ruiter (2018) focuses on the leader-following method in terms of quaternion param-

eterization and develops a novel non-linear distributed observer while assuming the commu-

nication graph between followers to be undirected and complete such that global finite-time

1H (x,κ,V (x)) = f (x,κ)T ∂V (x)
∂x + 1

2 trace
(

a(κ) ∂ 2V (x)
∂x2

)
+ r(x,κ)
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convergence is assured even when only a single follower is connected to the leader.

5.2.1 The Problem

The equations of motion of the ith agent can be written as:

Q̇i =
1
2

Qi ◦ωi =
1
2

E(qi)ωi =
1
2

 −qT
i

q×i +ηiI3


Jiω̇i =−ωi× Jiωi +ui

where ωi ∈ R3 and Ji = JT
i are the angular velocity and inertia tensor of the agent expressed

in the body frame Fi, and the leader is indexed as 0. If all followers are connected to the

leader, it is sufficient to globally stabilize (Qi0,ωi0) = (±1,0), i ∈ In. Information flow, being

bidirectional, is given by a weighted undirected graph G = (V ,E ), and the leader-following

graph as Ḡ = (V̄ , Ē ) where V̄ = {0}∪ V̄ and Ē ⊆ V̄ × V̄ . The following are assumed:

• All spacecraft share the same inertial frame FI .

• Communication among followers is constant and bidirectional.

• Ḡ has a spanning tree rooted at node 0 (a path exists from the leader to any follower).

• The leader’s angular velocity ω0(t) and its first two derivatives are continuous in time.

• There exists constants γi, i ∈ I3 s.t. ||ω0(t)||∞ ≤ γ1, ||ω̇0(t)||∞ ≤ γ2 , and ||ω̈0(t)||∞ ≤ γ2.

5.2.2 The Solution

5.2.2.1 Distributed Finite-Time Observer Design

A non-linear distributed observer can be developed to obtain the leader’s trajectory (Q0,ω0, ω̇0)

for each agent in finite time when only a subset of the followers can access the leader’s attitude

and angular velocity relative to the inertial space. Assuming that the estimate of the leader’s
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trajectory, (Pi,vi,zi) ∈R4×R3×R3 is equal to the trajectory itself, the observer is designed as:

Ṗi =
1
2

Pi ◦ vi−λ1sgnβ1

(
n

∑
j=0

ai j(Pi−Pj)

)

v̇i = zi−λ2sgnβ2

(
n

∑
j=0

ai j(vi− v j)

)

żi =−λ3sgn

(
ai0(zi−wi)+

n

∑
j=0

ai j(zi− z j)

)

where (Pi(0),vi(0),zi(0)) ∈ R4×R3×R3, i ∈ In,λ1,λ2,0 < β1,β2 < 1,λ3 > γ3. The leader’s

angular acceleration ω̇0 is not available to followers and is calculated using a second-order slid-

ing mode differentiator. The equations of the estimation errors can be written based on the

equations of the observer. Given the assumptions in 5.2.1, the state estimates are all uniformly

bounded and the estimate is equal to the leader’s trajectory beyond an instance Tp.

Unlike previous research, it is only required for the leader’s trajectory to be bounded and con-

tinuous, and finite-time convergence ensures high accuracy. Higher-order sliding modes can

produce better accuracy and less sensitivity to input noise during digital implementation. More-

over, this distributed observer can be readily extended to the double integrator systems and

Euler-Lagrange systems. However, Pi(t) may not be a unit quaternion in 0≤ t ≤ Tp. Moreover,

the stability of the system does not ensure global stability on SO(3) and unwinding can occur.

This can be reduced by reducing Tp by increasing λi, i = 1,2,3.

5.2.2.2 Consensus Law Design

Since the attitude estimate need not be a unit quaternion, finite-time escape of the closed-loop

trajectory should be prevented. This is done by incorporating global finite-time attitude con-

trollers with full-state measurements and attitude-only measurements into the observer.

Full-State Measurements : A hybrid controller can be developed for followers (say i) that are

directly connected to the leader such that the global finite-time stability of the equilibrium set

Ei = {x f i ∈Mi : Qi0 = hi1,ωi0 = 0} is ensured, where hi ∈H= {−1,1}, x f i =(Qi0,ωi0,hi), i∈

In and Mi = S3×R3×H. The control law involves two control modes depending on whether

hiηi0 or δ (between 0 and 1) is greater. This controller cannot be applied for a follower that

does not have access to the leader, due to which estimates equal to the actual values for t ≥ Tp
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are developed. It is possible to have unbounded control torques for 0 ≤ t ≤ Tp. To keep them

bounded, a new function is defined for the control input, such that only finite energy is injected

into the closed-loop system, hence removing the disadvantage of finite escape time. Such a

leader-following spacecraft system with the specified hybrid control law along with the dis-

tributed observer ensures the uniform boundedness of (Qi0(t),ωi0(t)) and globally stabilizes

(Qi0(t),ωi0(t)) to (hi1,0) ∈ S3×R3, i ∈ In in finite time. The proposed consensus scheme also

removes the requirement of communicating the binary logic variable hi between neighboring

agents, leading to a simpler switching logic.

In a real-life scenario, switching based on the logic variable hi will be a continuous approxima-

tion for the actuator. If the actuator responds ‘fast enough’, the effect of this hysteretic switching

can be well-approximated. It has been previously shown that the maximum number of switch-

ing is proportional to the initial kinetic energy. Hence, the number and speed of switching can

be reduced by initializing with small initial angular velocity errors.

Attitude-only Measurements : Follower i can track its attitude Qi but not its angular ve-

locity ωi. Moreover, the transient nature of Qi0 is absent for t ≥ Tp. A controller can be

developed similar to the previous case but with hi and h̃i (switching variable associated with

Q̃i0). A leader-following spacecraft system with this hybrid control law combined with the

distributed observer ensures the uniform boundedness of (Q̃i0(t),Qi0(t),ωi0(t)) and globally

stabilizes (Q̃i0(t),Qi0(t),ωi0(t)) to (h̃i1,hi1,0) ∈ S3 × S3 ×R3, i ∈ In, in finite time, where

Q̃i0 = Q̄∗i0 ◦ Q̂i0 is the quaternion error between Q̂i0, the estimate for Qi0, and Q̄∗i0, an alter-

native that substitutes for the necessary damping achieved by the direct use of angular velocity.

In this problem, fixed communication topology and zero state measurement time delays are

assumed. Moreover, although previous research has given solutions for leaderless attitude con-

sensus with time-varying topologies, angular velocities were treated as inputs. Dealing with

such topologies for distributed attitude observers is an open research topic.
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5.3 Attitude Synchronization and Tracking Control over a

Communication Network with a Switching Topology

Attitude synchronization is the problem of bringing multiple spacecraft attitudes into an agree-

ment. On the other hand, attitude tracking involves multiple spacecraft tracking a common

reference as a virtual leader in a cooperative way, where this reference is only available to a

portion of spacecraft. In most cases, the proposed control algorithms are applicable only us-

ing fixed network topology; i.e., each initial communication link between distinct spacecraft is

maintained all the time. This may not be possible in reality due to practical issues such as en-

vironment disturbance, communication range and perturbation; hence, it is required to develop

coordinated attitude control algorithms using switching topologies (Refer to Glossary).

Previous research involving switching topologies requires switching between (quasi-strongly)

connected subgraphs; i.e. each spacecraft has a connection link with at least one of its neighbors

all the time, which is a restrictive requirement. Liu et al. (2020) considers a switching topology

with the milder requirements of uniform joint connectivity (for synchronization) or uniform

joint quasi-strong connectivity (for tracking), and adaptive schemes designed to deal with the

unavailability of inertial parameters, hence allowing spacecraft to lose contact with others for

some time. The algorithms are developed by simultaneously exploring the attitude kinemat-

ics and dynamics without exact knowledge of inertial parameters, and a distributed observer is

proposed since leader reference information is only partially available.

5.3.1 The Problem

A group of n spacecraft is considered whose orientation in the body-fixed frame Bi with re-

spect to an inertial frame I is represented by modified Rodrigues parameters (MRPs, Refer to

Glossary) σi, and rotation matrix Ri represents the rotation from Bi to I . MRPs are used since

they exhibit singularities at ±2π , which can be avoided by switching to the other MRP repre-

sentation (σ or − σ

σT σ
). The kinematics and dynamics of the attitude system of each spacecraft
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are given as:

σ̇i = G(σi)ωi

Jiω̇i =−ω
×
i Jiωi + τi

where ωi is the angular velocity in Bi, Ji is the inertial matrix with respect to Bi, τi is the control

torque in Bi, and G(σi) =
1
2

[
1−σT

i σi
2 I3 +σ

×
i +σiσ

T
i

]
. The dynamics of a leader spacecraft

indexed 0 is also defined in a similar manner, and the reference angular velocity ω0 can be a

finite combination of any step function and sinusoidal function. Two control objectives need to

be solved while imposing constraints on the system:

• Coordinated attitude synchronization: Develop a distributed control algorithm such

that all the spacecraft attitudes reach a synchronization over a switching network, i.e.,

lim
t→∞

(σi(t)−σ j(t)) = 0, lim
t→∞

ωi(t) = 0,∀i, j ∈ V

• Coordinated attitude tracking: Develop a distributed control algorithm such that all the

spacecraft attitudes track the reference attitudes σ0 and the angular velocity ω0 simulta-

neously over a switching network, i.e.,

lim
t→∞

(σ0(t)−1 ◦σi(t)) = 0, lim
t→∞

(ωi(t)−ω0(t)) = 0,∀i ∈ V

5.3.2 The Solution

5.3.2.1 Coordinated Attitude Synchronization

The switching graph is assumed as undirected and uniformly jointly connected, and given

the vectors a = [a1,a2,a3]
T and θi = [Ji,11,Ji,22,Ji,33,Ji,12,Ji,13,Ji,23]

T , a linearization operation

M(a) is introduced such that Jia = M(a)θi. A coordinated adaptive control algorithm is pro-

posed that gives τi and θ̂i (estimate of θi) in terms of ωi, σi, and the adjacency matrix Aζ (t). The

absolute attitude information is delivered via the communication network. Here, each space-

craft does not have exact knowledge of its inertial parameter Ji due to which θi is unknown
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and hence estimated, and this estimate is fed into the dynamics equation of the spacecraft. The

paper develops an algorithm that achieves attitude synchronization provided the satisfaction of

a particular criterion on the control parameters of the algorithm.

5.3.2.2 Coordinated Attitude Tracking

The leader-follower graph is assumed to be uniformly jointly quasi-strongly connected and the

follower graph is undirected. The tracking problem can be solved in two steps:

Distributed Observer Design : The estimates of the MRPs and the velocity of the leader are

calculated at each agent by a distributed observer that depends on the previous estimate and

the error in estimation. The estimation error system derived from the observer is shown to be

asymptotically stable provided constraints on the maximum value of estimation error at t = 0.

This is proven in four steps wherein a particular Lyapunov function dependent on the velocity

error is shown to be constrained in piecewise time intervals and hence goes to 0 as t → ∞ due

to which velocity error and, therefore, MRP error goes to 0 as t→ ∞.

Tracking Control Development : Given the dynamics of the attitude error σ e
i = σ̇

−1
i ◦σi, the

tracking control τi,∀i ∈ V is proposed along with an estimate for θi. For the given spacecraft

system conditions, the proposed tracking control guarantees that the attitude tracking objective

is achieved. This is proven using a suitable Lyapunov function that gives limt→∞ ωe
i (t)= 0 using

Barbalat’s Lemma (Refer to Glossary), further giving limt→∞ σ e
i (t) = 0 and limt→∞ R(σ e

i ) = I3,

from which we get limt→∞(ωi(t)− ω̂i(t)) = 0,∀i ∈ V .
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Chapter 6

Results and Discussions

6.1 Introduction

This chapter discusses the results obtained from simulations performed by the authors of rele-

vant publications. The corresponding inferences are also explained to some extent. Chapter 3

has been excluded since the research works discussed therein were mostly written as surveys

on previous existing work. Hence, this chapter focuses on recent developments in the fields of

spacecraft formation control and attitude control.

6.2 Decentralized Formation Flying

Sakurama et al. (2019) consider six agents in R2 configured as a graph with four maximal

cliques of order 3. The desired formation is achieved at t = 40 with some rotation and trans-

lation. Each agent at xi(t) is matched to a desired position x̂∗ik(t) = RCk(x∗k)+ τCk(t) for each

clique Ck. These matched desired positions, though initially separated, gather gradually to form

the desired formation. Collision avoidance can also be incorporated as a repulsive potential
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force in v(X). Secondly, seven agents in R3 are configured with four maximal cliques of order

4. The desired formation is again achieved at t = 40 without reflections owing to distributed

pattern matching. This is not the case with the existing method that uses the distance-based con-

troller, where final agent positions may be different from desired positions due to reflections.

To develop a graph condition to achieve an indicator to TX∗ , the concept of a framework is

defined: a pair (G,X) for graph G and matrix X ∈Rd×n. The framework (G,X∗) is clique-rigid

if, for each matrix X = [x1 x2 ... xn],

[x j] j∈C ∈PC (TX∗) ∀C ∈M-clq(G) =⇒ X ∈TX∗

The paper states a number of theorems based on this:

• (G,X∗) is clique-rigid if it is the only framework that can be constructed from the set of

the frameworks (G|C , [x∗ j] j∈C ) induced by the maximal cliques C ∈M-clq(G).

• There exists an indicator v to target set TX∗ if and only if (G,X∗) is clique-rigid.

• Framework (G,X∗) is clique rigid if (but not only if) (G,X∗) is globally rigid and there

exists a clique C satisfying |C | ≥ d +1, [x∗ j] j∈C ∈Md|C |

• If framework (G,X∗) is clique rigid, (G,X∗) is rigid.

Clique rigidity is stronger than rigidity, and given a clique that satisfies the condition in the

third theorem, clique rigidity is weaker than global rigidity. Furthermore, the zero set Z ( ∂v
∂X )

is the globally attractive equilibrium set and v−1(0) is a locally attractive equilibrium set of the

system ẋi(t) = Riui(t) with the gradient-based control input as given earlier. Also, if framework

(G,X∗) is clique rigid, TX∗ is a locally attractive equilibrium set of this system with the same

control input, and if G is complete, TX∗ is the globally attractive equilibrium set.

Ren and Beard (2004) present simulation results for nine spacecrafts (a mothership and eight

other ships) developing a circular formation following which they rotate 45◦ about the inertial

z-axis. To test the robustness of the system, the local copies of the coordination vector are in-

stantiated at different time instances, and varying delays of communication and sample times

are considered. The simulation is considered for three cases: one without formation feedback

and no actuator saturation, one without formation feedback but with actuator saturation, and
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one with formation feedback amid actuator saturation (the case without actuator saturation but

with formation feedback should give similar results as the first case). The average coordination

error, 1
N ∑

N
i=0 ||ξi− 1

N ∑
N
i=0 ξi||, is observed to be identical with or without actuator saturation

since that does not affect the dynamics of the virtual structure. However, this is larger in the

third case since formation feedback can add dissimilarities between different instantiations.

The absolute tracking errors for position and attitude are compared for the three cases. Includ-

ing formation feedback to actuator saturation decreases the error, making it similar to the first

case, though at the cost of system convergence time. Similar observations are seen for the rel-

ative position and attitude error even with the latter being smaller for case 3 than for case 1.

The control forces and torques are also analyzed showing the saturation of τz in case 2 which is

mitigated using formation feedback.

She and Li (2020) conduct two tests, one for each level of the algorithm (mission planning and

mission scheduling). The first one compares results when MATLAB Genetic Algorithm solvers

are run on the mission planning problem against the proposed algorithm for a certain set of

system parameters. This is done as three parts:

• Considering the symmetric path assembly criterion, the hybrid algorithm shows slight

improvement over the genetic algorithm, possibly from the latter reaching a local minima

due to complexity.

• Considering the inter-robotic distance criterion, the improvement is not significantly large.

• The first condition is removed to consider asymmetric path assembly. Since many more

solutions are possible in this case, the relative inter-robotic distance is further increased.

The second test checks the effectiveness of mission scheduling. The improvement in relative

distances is very small without considering delays. Delays are added for the manipulators to

wait until the relative distance is larger than a minimum threshold. Meanwhile, an adaptive law

decreases this threshold if all robots are blocked. These improvements reduces risks of collision

and simplifies the entire process. However, they increase the total assembly period, and due to

asymmetry, some regions are completed even before others finish 50% of their work.
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Chen et al. (2017) perform simulations for the multi-agent system using the proposed model.

There are two cases included in the paper. The first case gives a situation where the agents

are scattered on a plane with some close to the virtual agent whereas others being farther:

q10 = [0 20 0 0 0]T , q20 = [−20 10 0 0 0]T , q30 = [−20 − 20 0 0 0]T , q40 = [20 10 0 0 0]T .

In the second case, all agents are placed on a line such that they have to actively change their

orientations and move to the virtual leader: q10 = [0 30 0 0 0]T , q20 = [0 20 0 0 0]T , q30 =

[0 −20 0 0 0]T , q40 = [0 −40 0 0 0]T . Given below is a representation of the transitions.

(a) Case 1 (b) Case 2

Figure 6.1: Transitions in the two cases (Chen et al. (2017))

The initial positions are depicted in the t = 0 plot for each system. The second graph for each

case (t = 500s for (1) and t = 180s for (2)) depicts the time when all the agents are aligned

properly but have to translate to the virtual leader, the end of which is depicted by the third

graph (t = 780s for (1) and t = 1350s for (2)) when the pre-assembly configuration is achieved.

The assembly configuration is achieved at t = 2000s for (1) and t = 2200s for (2) by decreasing

the radius of the virtual leader after the pre-assembly configuration is achieved.

Chen and Wen (2018) consider the simulations of two systems. Both systems have six identical

flexible spacecrafts with the same parameters for both the agents and the control algorithm, and
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they differ in the initial positions and orientations of the agents, that for the first system being:

x10 = [−100 −100 −π/2]T , x20 = [−50 20 −π/4]T , x30 = [0 −10 −π/8]T

x40 = [30 50 π/8]T , x50 = [60 0 π/4]T , x60 = [90 20 π/2]T

and that for the second system being:

x10 = [−100 −100 −π/2]T , x20 = [−90 80 −π/4]T , x30 = [−80 −60 −π/8]T

x40 = [−70 −40 π/8]T , x50 = [−60 −20 π/4]T , x60 = [−50 0 π/2]T

The Laplacian matrix of the systems according to graph G1 is given as:

L =



1 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 1


The value of the disturbance estimation error converges to zero. Moreover, since the radial

Euclidean distances between the spacecrafts are always positive, there is no collision between

the agents. In the final step of moving from the pre-assembly configuration to assembly, the

hubs only move in the X-direction as expected from the mission planning strategy.

6.3 Spacecraft Attitude Control

Golpashin et al. (2020) consider simulations consisting of a 6U satellite of dimensions 10cm×

20cm×30cm, maximum mass 6kg and entries of the moment of inertia tensor in principal axes

I1 = 0.05, I2 = 0.065, and I3 = 0.025. The input directions are unit vectors in the three axes.

A Monte Carlo experiment is used to compare the results of the proposed stochastic non-linear

controller to an LQR controller and to a deterministic non-linear controller (ε = 0). The simu-
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lations are performed for 2000 particles on a rest-to-rest maneuver from x = [0 0 0 1 1 1]T to

x = [0 0 0 0 0 0]T . Two gain sets are used to study the maneuvers, the first (gain set A) with

conservative gains where the strong second condition of the first proposition (pg. 5 in the paper)

holds true, and the second (gain set B) with aggressive gains where it need not hold true.

It is noticed that the spectral norm increases with the variance of noise, which is proportional

to ε2. The stochastic controller develops smaller cost than the conventional LQR controller and

this generally decreases with increasing order. The decrease in cost for gain set A is not that

pronounced when compared to the deterministic controller but again it decreases with increas-

ing order and when compared for gain set B, the decrease is much larger. Gain set B also shows

that increasing ε decreases the total cost for the stochastic controller. More aggressive gains and

larger spectral norms give higher differences in the total cost, resulting from the ‘multiplicative

nature of control uncertainty’ (a larger thrust gives a higher variation in thrust). The perfor-

mance of the sextic stochastic controller is plotted against that of the LQR controller measuring

the probability of stabilization versus total cost, and it is observed for both gain sets that the

former has a higher probability to achieve lower total cost when compared to the latter.

On plotting the trajectories of 100 realizations of the above two controllers for ε = 0.2, we

notice that the aggressive gain set B shows a more distinctive improvement in performance for

the stochastic controller as well as higher variations such as the case where angular velocity

is mostly between ±0.5 for A but overshoots above 5 for several points in B. The stochastic

controller also keeps a smaller difference between the minimum and maximum trajectories,

hence setting a stronger constraint on the possible trajectories. Gain set A represents satisfying

a strong condition, but there may exist other stable controllers which need not follow the propo-

sition, one of which is represented through B.

The earlier simulations made sure that the initial conditions were within the region of attrac-

tion. This is now removed and the initial conditions are set to be within norm 1 of the origin:

x = [0 0 0 0.4 0.4 0.4], ε = 0.2. The system is stable and optimal with a significant decrease

in the total cost for the stochastic controller compared to the LQR controller. Here, the strong

condition of the proposition is satisfied although the Riccati solution gives entries of magnitude

larger than 1. The limitation on initial conditions can be mitigated by having a planning algo-

rithm with reference waypoints at less than norm 1 from each other.

Gui and de Ruiter (2018) have performed simulations on Matlab/Simulink to test the perfor-
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mance of the distributed observer. A leader-following spacecraft system is considered with

four identical rigid spacecraft as followers and only one follower directly connected to the

leader. The leader follows Q0(0) = 1 and ω0(t) = 0.01[sin(Ω0t),cos(Ω0t),sin(Ω0t)], where

Ω0 = 0.5 rad/s. Measurement and communication is quantized in time, and a non-zero distur-

bance torque is applied on each spacecraft.

The full-state measurements case exhibits fast transient with the leader’s trajectory being recov-

ered within 5 seconds. Moreover, it shows some robustness to the small time delays in mea-

surement and communication updates as well as the disturbance torque applied to each space-

craft. Followers reach an agreement with the leader in the attitude-only measurements case as

well, and some robustness with respect to disturbances and time delays is again observed. The

preprint of the paper presents results with time-varying topologies, and the estimation errors and

attitude tracking errors are still convergent indicating the possibility for the distributed observer

to be applicable for time-varying topologies as well.

Liu et al. (2020) have performed two simulation, one for testing coordinated attitude synchro-

nization and the other for Coordinated Attitude Tracking. The former simulation considers four

spacecraft, and the network topology randomly switches between four graphs with a retaining

time of 10 seconds for each subgraph. The MRPs and angular velocities of each spacecraft are

given and θi are initialized to zero. Also, the inertia matrix estimate is initialized with a 20%

discrepancy. Using the adaptive algorithm gives asymptotically stable attitude synchronization,

whereas not using it only bounds the attitudes. The algorithm causes all the angular velocities

to converge to zero. Moreover, the control torque and the parameter estimates are bounded.

The second simulation considers a leader in addition to the four spacecraft. Once again, the net-

work topology randomly switching between four graphs with only two having a link between

the leader and any other spacecraft. The initial states are also identical, while σ̂i and v̂i are

initialized to zero. The proposed distributed controller and tracking control ultimately achieves

coordinate attitude tracking, although the transient is relatively long compared to the synchro-

nization problem (though not much overshoot). Moreover, the control torque and the parameter

estimates are bounded as in the previous problem.
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Chapter 7

Observations and Conclusions

7.1 Introduction

This chapter presents relevant observations from the research works discussed in the previous

chapters. These findings are linked to the problem statement of the project and evaluated based

on their applicability. Moreover, the scope of further research is discussed as elaborated in the

papers as well as from from personal observations.

7.2 Traditional Concepts on Spacecraft Attitude Control

The textbook on ‘Spacecraft Dynamics and Control’ deals to a large extent with the concept

of attitude control for achieving suitable orbits for the spacecraft. A concept worth noting for

the application of formation control is the idea of Euler-Hill equations in Section 2.3.5 wherein

satellites close to each other can develop a non-inertial frame of reference that is based on the

body frame of any one of the satellites. The equations for ρ= r1−r2 can be conjoined with a

suitable control law to manage the shape and size of the formation.
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Much of the traditional literature on spacecraft attitude control deals with Euler angles, direc-

tion cosines, and quaternions, as is observed in Section 2.6.1 of the textbook. A much better

approach for attitude control is using the concept of modified Rodrigues parameters as men-

tioned in Liu et al. (2020). This method uses only three parameters rather than four (as in the

case of quaternions), but the singularities that arise from this restriction are at 2π and −2π

which can be avoided by switching the parameters as mentioned in Section 5.3.1.

7.3 Basic Concepts on Formation Control

Knorn et al. (2016) present the developments in the field of collective behaviors for multi-

agents systems by dealing with the various techniques used in both the time and the network

dimensions for such networks. The survey discusses research performed on several aspects of

multi-agent control. The topic of formation control is not explained in detail although other

useful aspects such as dynamics, topologies and expected non-idealities are discussed.

Oh et al. (2015) delve particularly into the field of formation control. The paper predominantly

focuses on displacement-based control using identical agents, and this needs to be studied for

heterogeneous agents which is more realistic such as managing the orbits of multiple satellites

belonging to different satellite constellations (although position-based control seems easier in

this scenario). Issues such as connectivity preservation and collision avoidance need to be han-

dled in both displacement- and distance-based control.

As a result of its communication with a global coordinator using sensing equipment such as

GPS receivers, position-based control is expected to be costly. Also, as mentioned in the paper,

distance-based control requires the interaction graph to be rigid or persistent. Non-linear sys-

tems can complicate stability analysis as well. Though the paper has dealt with distance-based

control, a more general study of the field is required in terms of the stability of the rigid (or

persistent) system as well as the model used to depict the agent.

Anderson et al. (2007) deal with the specific problem of using a simple cyclic directed graph for

formation shape control. The paper shows that persistence of the graph is required for stability

and not only rigidity. Separate work by the same authors, Summers et al. (2011) , has dealt with

69



minimally persistent cyclic graphs with more number of agents. However, the control laws are

not always stabilizing and different gains need to be given to different agents for stability based

on the rigidity matrix.

7.4 Practical Applications of Decentralized Formation

Sakurama et al. (2019) present a solution using distributed control and pattern matching for the

problem of formation control using relative positions using local coordinates and bearings, and

develops on why clique rigidity is a strict condition to achieve the desired formation. It also

considers a gradient-flow approach The paper also provides numerical examples demonstrating

the effectiveness of the proposed method and concludes with theorems concerning the suffi-

ciency and the necessity of clique rigidity for achieving the desired formation.

The paper proves that a multi-agent system can converge to a desired formation with clique

rigidity even without global rigidity or completeness, as a result of which the graph becomes

much simpler. In the case of a spacecraft formation, this is valuable since it will help surpass

communication limitations and occlusion of spacecrafts due to the earth.

Ren and Beard (2004) present the problem of decentralized formation control of spacecraft.

A virtual structure approach using a bidirectional ring topology is used and the corresponding

control laws are developed for controlling both the spacecrafts and the coordination vector in-

stantiations. Simulation results show that using formation feedback gives almost ideal results

in spite of actuator saturation.

The concept of the paper is very close to the theme of the project. However, a weakness of this

system is that each local instantiation should be synchronized leading to more complexity. Us-

ing coordination vectors for information exchange and a ring topology reduces this complexity

to some extent. There might also exist discrepancies between the starting time of each instan-

tiation of the agent coordination vector dynamics, and this can be mitigated by using suitable

control laws for the coordination vector in each individual agent.

She and Li (2020) present the problem of assembling a large space telescope using multiple ma-

nipulators. In order to provide an optimal solution for the path taken by the manipulators, it de-
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velops a two-level algorithm and adds in more conditions such as maximizing inter-manipulator

distance and introducing time delays for simplifying the process without considering a separate

collision detection algorithm. This algorithm has been proven through simulations to perform

better than established algorithms on platforms such as MATLAB and C++.

There is only a small hint of formation control in the concept since it deals with robots which

construct the telescope rather than self-assembly where formation control would have been es-

sential. Also, the simulations assume that the pieces of the telescope are already placed in the

required locations although, in a real-life scenario, the manipulator will have to return to the

initial point for collecting the next piece after inserting each piece and this period would have to

be included into the algorithm. Apart from these factors, the paper has proposed a proper idea

which can possibly be implemented readily into a high-level controller for such a system.

The results obtained by Chen et al. (2017) clearly show that the mechanism can be effective in

an ideal environment. However, the paper mentions about shortcomings that may occur due to

disturbances, input saturation, etc. due to which a more robust controller needs to be developed

for a real-life application. The flexibility of the beams protruding from the rigid hub leads to

significant deformation and first-order modal vibrations when the hub starts moving although

these vibrations die out as the system reaches stability. Moreover, there seems to be high vibra-

tions in the control variables To acting on the rigid hubs which subsequently reduce.

Having been written by the same authors and with similar objectives, the problem of the paper

by Chen and Wen (2018) and several concepts from the methodology are very similar to the

previous paper. The proposed compound controller consists of an assembly controller that fol-

lows a fixed graph (which is based on the numbering of the agents) and a collision avoidance

controller that follows a time-variant graph (which is modified based on the distance between

the agents). The assembly controller considers the effect of disturbance due to the non-observed

vibrations of the two appendages that stick out from the rigid hub. As a result, it utilizes a dis-

turbance observer which approximates to the actual disturbance as proven using the Lyapunov

stability theorem and as displayed on the case studies.

The proposed controller is simple and easy to implement as is visible from the fact that mod-

ifying the parameter ∆ can allow the multi-agent system to achieve any collision-free final
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configuration in two-dimensional space. Moreover, it can be scaled to a huge multi-agent net-

work. However, it does not consider practical difficulties such as three-dimensional assembly,

realization of sensors and actuators, and computational complexity.

7.5 Recent Developments in Spacecraft Attitude Control

Golpashin et al. (2020) present a stochastic non-linear controller which performs better than an

LQR controller and a deterministic non-linear controller in several aspects. It is shown that the

total cost reduction is improved with increasing non-linearity of the controller and increasing

noise variance. The paper suggests how such a controller with desirable disturbance suppres-

sion properties can be used in space applications such as docking where torque disturbances

could be unwanted or even hazardous.

Gui and de Ruiter (2018) propose a non-linear distributed observer that recovers the leader’s tra-

jectory (attitude and angular velocity) in finite time for each follower provided a fixed topology

and no time delays. This observer is integrated with single-spacecraft controllers with full-state

measurements and attitude-only measurements for global group attitude agreement. The ob-

server is simulated to test convergence of the errors, and positive results are obtained in both

cases even with disturbances and time delays.

Liu et al. (2020) develop algorithms for coordinated attitude synchronization and coordinated

attitude tracking, where agents are unaware of their inertial parameters and the network topol-

ogy graph switches although satisfying uniform joint connectivity for attitude synchronization

and uniform joint quasi-strong connectivity for tracking. An adaptive controller is developed for

the former problem such that the inertial parameter is estimated along with the control torque.

The tracking problem is solved in two steps: distributed observer design to estimate the MRPs

and velocity of the leader, and tracking control development for attitude tracking.

The techniques presented in the paper help reduce the load on interaction capabilities by actively

cutting the interaction connection regularly. This is useful since power concerns may preclude a

strong interaction between every spacecraft. The system is also made robust against abrupt link

disconnection from environmental factors, which is very probable for spacecraft formations.
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Chapter 8

Future Scope and Personal Learnings

8.1 Introduction

The field of multi-agent formation control has been predominantly dealt using simple models

such as single- and double- integrators as observed throughout the paper by Oh et al. (2015).

Research independent of this field has also introduced the concept of attitude control in great

detail. Concepts learned from the literature survey done in this project can be used to develop

decentralized formation control of spacecraft using optimal attitude control strategies. This

chapter deals with techniques and strategies that can be adopted in this direction.

8.2 Future Prospects

As observed in Section 2.3.5 and referenced in 7.2, the concept of Euler-Hill equations can be

utilized in controlling the distance of heading of spacecraft in a formation.

A large fraction of research papers discussed in this thesis explain why and/or how the proposed

concept can be improved. Knorn et al. (2016) discuss several prospects of research in collective
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behaviors such as:

• Developing the requirements on synchronization for nonlinear and heterogeneous agents

in complicated networks without being governed by a ’homogeneous kernel’;

• considering direct physical coupling that usually exists among agents, hence disregarding

the assumption that all agents are autonomous; and

• developing the behavior of multi-agent systems in both the time and the network dimen-

sions for two-dimensional collective behaviors.

The concept that Anderson et al. (2007) develops on the control of a co-leader system is a direct

application of distance-based control. This can be developed to a three-dimensional setting to

achieve realistic decentralized control.

In their work on multi-agent coordination via distributed pattern matching, Sakurama et al.

(2019) discuss how the concept of relative states can be generalized to extend the class of

observable outputs, such that they match the requirements from controller design in practical

applications. On the application-based perspective, Ren and Beard (2004) mentions how the is-

sue of time delay in information exchange between neighboring spacecrafts has not been dealt

with and is kept open for further research in the problem of decentralized formation flying using

a virtual structure approach. Also, in the paper on on-orbit spacecraft assembly using potential

field, although Chen et al. (2017) mention the disjunction between the problem and general

spacecraft formation control, a similar artificial potential field may be developed for distance-

based control. Similar to the formation control problem, the problem statement in the paper

constrains the motion of agents into a given state using a simple and feasible mechanism.

The work on attitude synchronization and tracking control with switching communication net-

work topologies by Liu et al. (2020) has to be extended with the inclusion of communication

problems such as delay, packet loss and distortion. From the research work by Golpashin et al.

(2020) on thrust uncertainty in attitude control, it may be a good idea to use the optimal control

algorithm in developing a controller for individual spacecrafts in a multi-spacecraft formation.

Moreover, the observer presented in the paper by Gui and de Ruiter (2018) is very useful for

a real-life formation control problem involving spacecraft since not all followers will be able
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to directly connect to the leader. However, this system has not been proven to function for all

time-varying topologies or time-delayed links though these can be expected since the space-

crafts work on clocked controllers and may be at very large distances from each other.

8.3 Personal Learnings from the Project

This project has personally been a novel experience in several manners. First of all, it introduced

me to a very practical problem that captured my imagination. The applications of decentralized

control are widespread, from small Kobuki robots to enormous satellites and spaceships. And

decentralized formations with attitude control is especially applicable for managing spacecraft

and satellites in earth orbits. Very soon, with technological developments and commercial voy-

ages, outer space will be as crowded as today’s airspace. A control scheme that helps achieve

the desired goal without collisions will be a necessity, and I believe that this work will have a

significant role in that application.

Secondly, the project helped me look around into nature and made me realize how decentral-

ized multi-agent control has always been there around us, from social insects like ants and

honey bees to complex formations such as murmurations. It is fascinating to observe how the

cooperative control of multiple agents can be more effective than individual labor, and I believe

that, in the future, such systems can have much wider roles in our lives.

Throughout the entire course of the project and thesis preparation, I was fortunate to follow

the basic tenet of research: standing on the shoulders of giants and developing thereafter into

domains unknown. It is a common mistake to perform research without a prior understanding

of the work that has already been done in the field. Thanks to my advisor, I was able to get a

lay of the land instead of prematurely attempting to deal with complex problems.

Finally, the mathematical rigor that each research work posed was indeed a challenge at some in-

stances, but they have helped me understand concepts that are actively used for solving research

problems, concepts that are not usually taught through textbooks in lectures but are required to

be self-learned. As mentioned previously, I would never have realized the depth of this field if

not for the literature survey involved in the project.

In general, the project has been an amazing experience and has made an enormous impact on

my academic life.
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Appendix A

Glossary

Barbalat’s Lemma : Suppose f (t)∈C1(a,∞) and limt→∞ f (t)=α where α <∞. The lemma

states that, if f ′ is uniformly continuous, then limt→∞ f ′(t) = 0. 1

Cactus graph : A cactus graph is a pair of distinct simple circuits have at most one common

vertex.2

Containment control problem : The containment control problem involves driving followers

into the convex hull spanned by dynamic leaders.2

Cut-balanced topology : A cut balanced topology is one where the influence of remaining

groups on a group of agents is proportional to its influence on the remaining ones.2

Euler-Bernoulli beam assumptions : The Euler-Bernoulli beam assumptions are: 3

• Cross sections of the beam do not deform in a significant manner under the application of

transverse or axial loads and can be assumed as rigid

1ASU | Hao Liu | Things You Probably Would Not Want To Explain To Your Parents | Barbalat’s Lemma
2Oh et al. (2015)
3MIT 16.20 | Module 7 - Simple Beam Theory
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• During deformation, the cross section of the beam is assumed to remain planar and normal

to the deformed axis of the beam.

H2 norm : The H2 norm of a stable system H is the root-mean-square of the impulse response

of the system.4

Genetic Algorithm : The genetic algorithm is a method for solving both constrained and

unconstrained optimization problems based on natural selection; i.e., by repeatedly modifying

a population of individual solutions. At each step, individuals are selected at random from the

current population to be parents and are used to produce the children for the next generation.

Over successive generations, the population "evolves" toward an optimal solution.5

Hausdorff distance : The Hausdorff distance between two sets of numbers A= {a1,a2, ...,an}

and B = {b1,b2, ...,bm} is the smallest value d such that every point of A has a point of B within

distance d and every point o f B has a point of A within distance d, where 6

d(A,B) = max{maxa ∈ Aminb ∈ B|b−a|,maxb ∈ Bmina ∈ A|a−b|}

Lipschitz condition : Function f (t,y) satisfies a Lipschitz condition in the variable y on a set

D⊂ R2 if a constant L > 0 exists with | f (t,y1)− f (t,y2)| ≤ L|y1− y2|, whenever (t,y1), (t,y2)

are in D. Here, L is Lipschitz constant.7

Modified Rodrigues parameters (MRPs) : σi =ηi tan(φi
4 )∈R

3 for the i-th spacecraft, where

η ∈ S2, φi ∈ (−2π,2π) are the corresponding Euler axis and angle resp.

Network integrity : Network integrity is defined as the ability of the network to support a

desired communication rate.2

Relative and Distributed gradients : A continuous function v(X) is said to have a relative

gradient if it is differentiable almost everywhere and for i∈V , there exists a function f̄i such that

4MathWorks Help Center | Resources | norm
5MathWorks Help Center | Documentation | What Is the Genetic Algorithm?
6Rote (1991)
7UC Berkeley | MA128A Spring 2017 Notes | Week 9
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∂v
∂xi

(X) = −Ri f̄i([RT
i (x j− xi)] j∈V\{i}). Fr is the set of all continuous functions having relative

gradients. A continuous function v(X) is said to have a distributed gradient if it is differentiable

almost everywhere and for i ∈ V , there exists a function f̃i such that ∂v
∂xi

(X) =− f̃i(xi, [x j] j∈Ni).

Fd(G) is the set of all continuous functions having distributed gradients over G. 8

Standard (1-D) Wiener process (or Brownian motion) : Brownian motion involves a stochas-

tic process {Wt}t≥0+ indexed by non-negative real numbers t such that:

• W0 = 0,

• with probability 1, the function t→Wt is continuous in t,

• the process {Wt}t≥0 has stationary, independent increments, and

• the increment Wt+s−Ws follows the normal(0, t) distribution 9

Stochastic Differential Equations : The problem of solving stochastic differential equations

involves solving the differential equation of the form: 10

dX = µ(t,X(t))dt +σ(t,X(t))dB(t)

for given functions a and b, and a Brownian motion B(t). A function (or a path) X is a solution

to the differential equation above if it satisfies:

X(T ) =
∫ T

0
µ(t,X(t))dt +

∫ T

0
σ(t,X(t))dB(t)

Switching Graph : A switching graph Gζ (t)= {V ,Eζ (t)} consists of a node set V = {1,2, ...,n}

and a time varying edge set Eζ (t) ⊆ V ×V , where ζ (t) : [0,∞)→H is piecewise constant and

set H = {1,2, ..., h̄} includes all possible graphs (h̄ is some positive integer), s.t. the graph

switches at discrete time instances.

8Sakurama et al. (2019)
9UChicago | Statistics 313 (Stochastic Processes II) | Lecture Notes G

10MIT 18.S096 | Lecture 21 - Stochastic Differential Equations
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Tsiotras-Longuski Parameterization for orientation : The rotation matrix from the inertial

frame to the body frame is given as R = R1(z)R2(w) with

R1(z) =


cos(z) sin(z) 0

−sin(z) cos(z) 0

0 0 1



R2(w) =
1

1+w2
1 +w2

2


1+w2

1−w2
2 2w1w2 −2w2

2w1w2 1−w2
1 +w2

2 2w1

2w2 −2w1 1−w2
1−w2

2


where z ∈ R is a rotation about the body z-axis, and w = w1 + iw2 ∈ C gives the coordinates

for a point on the complex plane. The stereographic projection of the rotated z-axis onto the

complex plane gives w = b−ia
1+c where (a,b,c) are the direction cosines of the rotation. Since

R1(z),R2(w) ∈ SO(3), the parameterization gives a singularity at w1,w2→ ∞. The evolution of

w and z is given by the following differential equations: 11


ẇ1

ẇ2

ż

=


1
2 0 w2

0 1
2 −w1

−w2 w1 1




ω1

ω2

ω3

+


1
2(w

2
1−w2

2) w1w2 0

w1w2
1
2(−w2

1 +w2
2) 0

0 0 0




ω1

ω2

ω3



11Golpashin et al. (2020)
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